
TECHNICAL REPORT

Computational results on new staff scheduling benchmark instances

Tim Curtois, Rong Qu

ASAP Research Group, School of Computer Science, University of Nottingham, NG8 1BB, Nottingham, UK

First published online: 19-Sep-2014, last updated: 06-Oct-2014.

This report lists results of applying the algorithms presented in [2] to the staff scheduling problem
benchmark instances 1..24 [3]. The algorithms are an ejection chain metaheuristic and a branch and
price method. The branch and price method was shown to be very effective on smaller and medium
sized instances, often finding the optimal solution. Its weakness is on the larger instances on which it
may run out of memory trying to solve a sub-problem. The metaheuristic is a more robust and
practical method. Although it is outperformed on the smaller instances, it will still find good solutions
on the larger instances if given sufficient time. For additional comparisons we have also included the
results of applying Gurobi 5.6.3 [1] to an integer programming formulation.

Instances

Many of the original benchmark instances available at [3] can now be easily solved [2]. Most of the
original instances are also quite difficult to use due to their real world nature. They contain many
different types of constraints and objectives which are complicated to model and implement whatever
type of solving approach is being used (integer programming, metaheuristic, etc). For these reasons
the collection of instances has been recently supplemented with a new set of instances. The new
instances are designed to reflect real world requirements and scheduling scenarios yet still be easy to
use. They are also designed to represent a range of difficulty: from very easy to very challenging. To
make them easier to use and test, the number of constraint and objective types has been reduced to a
core of constraints found commonly in staff rostering problems. The new instances are also given in a
plain text format which is a lot simpler to parse and use. This allows researchers to spend less time
writing code for parsing the instances and more time on developing the algorithms and producing
results. Table 1 lists the instances and their dimensions. They range from very small (8 staff, 2 weeks,
1 shift type) to very large (150 staff, 52 weeks, 32 shift types).

Instance

Planning
horizon
(weeks) Staff

Shift
types

Instance1 2 8 1
Instance2 2 14 2
Instance3 2 20 3
Instance4 4 10 2
Instance5 4 16 2
Instance6 4 18 3
Instance7 4 20 3
Instance8 4 30 4
Instance9 4 36 4
Instance10 4 40 5
Instance11 4 50 6
Instance12 4 60 10

Instance13 4 120 18
Instance14 6 32 4
Instance15 6 45 6
Instance16 8 20 3
Instance17 8 32 4
Instance18 12 22 3
Instance19 12 40 5
Instance20 26 50 6
Instance21 26 100 8
Instance22 52 50 10
Instance23 52 100 16
Instance24 52 150 32

Table 1 Benchmark instances

Integer Programming Formulation

An integer programming model for the problem is given below. All instances start on a Monday and
the planning horizon h is always a whole number of weeks (h mod 7 = 0).

Parameters:

I set of employees.

h number of days in the planning horizon.

D set of days in the planning horizon = {1…h}.

W set of weekends in the planning horizon = {1...h/7}.

T set of shift types.

Rt set of shift types that cannot be assigned immediately after shift type t.

Ni set of days that employee i cannot be assigned a shift on.

lt length of shift type t in minutes.

max
itm maximum number of shifts of type t that can be assigned to employee i.

min
ib minimum number of minutes that employee i must be assigned.

max
ib maximum number of minutes that employee i can be assigned.

min
ic minimum number of consecutive shifts that employee i must work.

min
ic maximum number of consecutive shifts that employee i can work.

min
io minimum number of consecutive days off that employee i can be assigned.

max
ia maximum number of weekends that employee i can work.

qidt penalty if shift type t is not assigned to employee i on day d.

pidt penalty if shift type t is assigned to employee i on day d.

dtu preferred total number of employees assigned shift type t on day d.

min
dtv weight if below the preferred cover for shift type t on day d.

max
dtv weight if exceeding the preferred cover for shift type t on day d.

Decision variables:

xidt 1 if employee i is assigned shift type t on day d, 0 otherwise

kiw 1 if employee i works on weekend w, 0 otherwise

ydt total below the preferred cover for shift type t on day d.

zdt total above the preferred cover for shift type t on day d.

Constraints:

1. An employee cannot be assigned more than one shift on a single day.

∑
∈

∈∈∀≤
Tt

idt DdIix , ,1

2. Shift rotation. A minimum amount of rest is required after each shift. Therefore certain shifts

cannot follow others. For example, an early shift cannot follow a late shift.

tudiidt RuTthdIixx ∈∈−∈∈∀≤+ + ,},1...1{, ,1)1(

3. The maximum numbers of shifts of each type that can be assigned to employees. For example,

some employees will have contracts which do not allow them to work night shifts or only a maximum

number of night shifts.

∑
∈

∈∈∀≤
Dd

itidt TtIimx , ,max

4. Minimum and maximum work time. The total minutes worked by each employee must be between

a minimum and maximum. These limits can vary depending on whether the employee is full-time or

part-time.

Iibxlb i
Dd Tt

idtti ∈∀≤≤∑∑
∈ ∈

 ,maxmin

5. Maximum consecutive shifts. The maximum number of shifts an employee can work without a day

off. For example, part-time employees sometimes do not work as many consecutive shifts as full-time

staff.

}...1{, , maxmax

max

ii

cd

dj Tt
ijt chdIicx

i

−∈∈∀≤∑∑
+

= ∈

6. Minimum consecutive shifts. This can be modelled by preventing every sequence of consecutive

shifts below the minimum. For example, if the minimum number of consecutive shifts is four then we

must not allow any of the sequences: {off-on-off, off-on-on-off, off-on-on-on-off} where off is a day

without a shift and on is a day with a shift assigned.

)}1(...1{},1...1{, ,0 min
)1(

1

+−∈−∈∈∀>+








−+ ∑∑ ∑∑

∈
++

+

+= ∈∈

shdcsIixxsx i
Tt

tsdi

sd

dj Tt
ijt

Tt
idt

7. Minimum consecutive days off. This can be modelled in a similar way to the minimum consecutive

shifts constraint. For example, if the minimum number of consecutive days off is three then we must

not allow any of the sequences: {on-off-on, on-off-off-on}.

)}1(...1{},1...1{, ,011 min
)1(

1

+−∈−∈∈∀>






 −++






 − ∑∑ ∑∑
∈

++

+

+= ∈∈

shdosIixxx i
Tt

tsdi

sd

dj Tt
ijt

Tt
idt

8. Maximum number of weekends. A weekend is considered as being worked if the employee has a

shift on the Saturday or the Sunday.

WwIikxxk iw
Tt

twi
Tt

twiiw ∈∈∀≤+≤ ∑∑
∈∈

− , ,2)7()17(

Iiak i
Ww

iw ∈∀≤∑
∈

 ,max

9. Days off. These are days that employees cannot work because, for example, they are on vacation.

TtNdIix iidt ∈∈∈∀= ,, ,0

10. Cover requirements.

TtDduyzx dtdtdt
Ii

idt ∈∈∀=+−∑
∈

, ,

Objective function:

∑∑∑∑∑∑∑∑∑∑
∈ ∈∈ ∈∈ ∈ ∈∈ ∈ ∈

+++−
Dd Tt

dtdt
Dd Tt

dtdt
Ii Dd Tt

idtidt
Ii Dd Tt

idtidt vzvyxpxqMinimise maxmin)1(

The objective function models the requirement to maximise the allocation of employee shift requests

and minimise under and over staffing. The parameters qidt and pidt are the weights for shift on and shift

off requests respectively. For example, an employee may request to work a certain shift type on a

particular day. The higher the weight, the more important the request is to the employee. If there is no

request then the parameter has the value zero.

The variables ydt and zdt are the total numbers of staff below and above the preferred cover level for

each shift type t on each day d. The parameters min
dtv and max

dtv are weights to represent the importance

of minimising under and over coverage.

Results

To provide other researchers with results to compare against, we have used the two existing
algorithms presented in [2] and Gurobi 5.6.3 [1] and applied them to the new instances.

All the experiments were performed on Intel Core 2 Duo 3.16GHz, 8GB ram. The Gurobi solver was
limited to a single thread and a maximum time of 1 hour. Table 2. lists the results. Known optimal
solutions are in bold.

Instance Weeks Staff Shifts

Ejection chain Branch and Price Gurobi 5.6.3

10 min 60 min LB Sol. Time (s) LB Sol. Time (s)
Instance1 2 8 1 607 607 558 607 0.27 607 607 1.62
Instance2 2 14 2 923 837 828 828 0.13 828 828 5.22
Instance3 2 20 3 1003 1003 1001 1001 0.45 1001 1001 13.54
Instance4 4 10 2 1719 1718 1716 1716 1.50 1716 1716 158.99
Instance5 4 16 2 1439 1358 1141 1160 25.61 1143 1143 1520.24
Instance6 4 18 3 2344 2258 1949 1952 10.46 1950 1950 440.93
Instance7 4 20 3 1284 1269 1055 1058 93.73 1056 1056 2152.48
Instance8 4 30 4 2529 2260 1297 1308 11831.06 1281 1323 3599.83
Instance9 4 36 4 474 463 406 439 76.99 247 439 3599.85
Instance10 4 40 5 4999 4797 4631 4631 113.44 4631 4631 244.20
Instance11 4 50 6 3967 3661 3443 3443 19.11 3443 3443 109.92
Instance12 4 60 10 5611 5211 4040 4046 1336.4 4040 4040 2303.84
Instance13 4 120 18 8707 3037 Out of memory - - 1346 3109 3600.55
Instance14 6 32 4 2542 1847 Out of memory - - 1277 1280 3600.13
Instance15 6 45 6 6049 5935 Out of memory - - 3806 4964 3600.00
Instance16 8 20 3 4343 4048 3224 3323 265.02 3211 3233 3599.99
Instance17 8 32 4 7835 7835 Out of memory - - 5726 5851 3600.00
Instance18 12 22 3 6404 6404 Out of memory - - 4351 4760 3599.99
Instance19 12 40 5 6522 5531 Out of memory - - 2945 5420 3605.90
Instance20 26 50 6 23531 9750 Out of memory - - 4743 - 3600.05
Instance21 26 100 8 38294 36688 Out of memory - - 20868 - 3600.21
Instance22 52 50 10 - 516686 Out of memory - - - - 3600.19
Instance23 52 100 16 - 54384 Out of memory - - - - 3600.43
Instance24 52 150 32 - 156858 Out of memory - - Out of memory - -

Table 2. Results

References

1. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2014; Available from:
http://www.gurobi.com.

2. E.K. Burke and T. Curtois, New Approaches to Nurse Rostering Benchmark Instances,
European Journal of Operational Research 237(1) (2014) 71–81.

3. T. Curtois. Employee Shift Scheduling Benchmark Data Sets. 2014; Available from:
www.cs.nott.ac.uk/~tec/NRP.

