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Abstract 
A variety of neighbourhood operators have been used in local search and metaheuristic 
approaches to solving nurse rostering problems. We test and analyse the efficiency of these 
neighbourhoods on benchmark problems which are taken from real world scenarios. A 
variable depth search is then developed based on the results of this investigation. The 
algorithm heuristically chains together moves and swaps which define the more effective 
search neighbourhoods. A number of heuristics for creating these chains were developed and 
we present experiments conducted to identify the best ones. As end users vary in how long 
they are willing to wait for solutions, a particular goal of this research was to create an 
algorithm that accepts a user specified computational time limit and uses it effectively. When 
compared against previously published approaches the results show that the algorithm is very 
competitive. 
 

1 Introduction 

High quality nurse rosters benefit nurses, patients and managers. Patients receive 
better healthcare if nurses are able to spend more time with them and mistakes are less 
likely if nurses are not stressed, tired and overworked due to poor scheduling and 
understaffing. Improved rosters can not only decrease nurse fatigue but also help them 
maximise the use of their leisure time and satisfy more of their personal requests. 
From a management point of view, better and more flexible scheduling can help retain 
nurses and aid recruitment, reduce tardiness and absenteeism, increase morale and 
productivity and provide better patient service and safety. Costs can also be reduced 
through having to hire fewer agency nurses to fill gaps in rosters and lower staff 
turnover. 
Creating rosters, however, is a difficult and challenging search problem which 
requires the satisfaction of many constraints and the balancing of a variety of 
requirements. This time consuming and frustrating duty often falls to a head nurse 
who would rather be concentrating on their primary duty of caring for patients. 
Regular rescheduling may also be required to deal with staff sickness and absences. 
Computerised, automated rostering can remove a significant amount of this workload 
and provides a number of additional benefits including being able to create much 
higher quality schedules which are fair, impartial and which satisfy more preferences. 
Legal requirements can also be checked, management statistics collected and monthly 
reports generated, all reducing paperwork. Other bonuses can range from linking to 
payroll systems to emailing out rosters or publishing them on the web once they are 
created. 
Over the past 30-40 years, many different approaches have been used to solve nurse 
rostering problems of varying forms and complexity. Methods used include 
mathematical programming [9, 32, 39, 44, 49, 52], constraint programming [24, 40, 



42], goal programming and multi objective approaches [6, 7, 13, 31]. Recent, novel 
approaches include  case-based reasoning [10, 11] and Bayesian optimisation 
algorithms [4, 5]. A great variety of  local search and metaheuristic approaches have 
also been applied to the problem. A few recent examples are represented by [4, 12, 
16, 25, 41, 50]. Many more can be found in the literature reviews of Burke et al. [21] 
and Ernst et al. [27]. There are, however, very few large-scale neighbourhood 
searches applied to nurse rostering problems. 
As mentioned in a recent survey paper by Ahuja et al. [3] many successful very-large 
scale neighbourhood search techniques have appeared in various forms in the field of 
operations research. They commented, for example, that the well known Lin-
Kernighan algorithm for the travelling salesman problem can be viewed as a very 
large-scale neighbourhood search technique. Ahuja et al. categorised very large-scale 
neighbourhood methods into three similar classes, one of which are variable depth 
methods. Variable depth searches (including some ejection chain methods [28]) have 
been effectively applied to a number of optimisation problems, for example the 
vehicle routing problem [47] and the generalised assignment problem [53]. Many 
more examples of successful very-large scale neighbourhood searches can be found in 
the survey paper of Ahuja et al [3]. More recent applications include educational 
timetabling [1, 2, 43]. 
One paper that does introduce the application of such techniques to nurse rostering is 
that of Dowsland [26]. In her approach to providing an automated nurse rostering 
system, a tabu search is used that oscillates between decreasing cover violation and 
increasing roster quality. In each of these phases, two types of ejection chains are 
used. The first consists of a sequence of on/off day swaps between nurses and the 
other is made up of sequences of swapping week long work patterns between nurses. 
The chains are able to escape from bad optima that single on/off day or pattern swaps 
would not be able to escape from. 
Another example of using such techniques in solving a nurse rostering problem is the 
method of Louw et al. [38] who also use an ejection chain approach. The compound 
move used is similar to Dowsland’s chain of on/off day swaps. They noted “the 
compound move was able to achieve far superior reductions in the objective function 
value when compared to any of the elementary move types”. 
Very large-scale neighbourhood searches face the problem of exploring an 
exponentially large neighbourhood. Therefore, the key to developing effective ones is 
identifying heuristics and other mechanisms which can efficiently narrow or direct the 
search. This paper presents a variable depth search for nurse rostering and describes 
the heuristics and other features that make it successful. 
 
In developing this algorithm, we have also created some test instances based on real 
world problems which are now publicly available and which are intended to become 
benchmark problems in this area. As has been mentioned in bibliographic surveys of 
nurse rostering problems, there is a great lack of test problems and benchmarks [21] 
(particularly, real world benchmarks) and, as such, there is little comparative analysis 
of nurse rostering algorithms in the literature. Such analysis is very important to 
underpin scientific progress in this area. Although there are understandable reasons 
for this lack of publicly available problems (for example, there is no such thing as a 
typical nurse rostering problem and there is often an issue over the confidentiality of 
data) we hope our presentation of these problems goes some way to starting to fill this 
void. 



In Section 2, the problem is introduced. Section 3 investigates various search 
neighbourhoods that have been used to solve nurse rostering problems. Section 4 
presents the variable depth search and Section 5 contains the results from a number of 
experiments using this algorithm. Finally, Sections 6 and 7 discuss conclusions and 
future work respectively.  

2 Problem Description 

The data for this problem is based on and is similar to the data used in [16, 19, 20]. 
Some algorithms previously applied to this problem [16] were developed as part of a 
commercial system and as the data is from a real world environment it has been 
anonymized and any confidential information removed. Indeed, preserving 
confidentiality is the reason why the data is not identical to that used in [16, 19, 20]. 
 
The problem requires the production of non-cyclical schedules which satisfy all hard 
constraints and as many working preferences and requests as possible. There are so 
many conflicting constraints and requests that if they were all hard constraints, a 
feasible solution would generally not exist. Instead, they are modelled as soft 
constraints and given relative priorities using weights.  
 
In order to provide these data sets as benchmarks, we have made software 
implementations of these evaluation functions publicly available 
(http://www.cs.nott.ac.uk/~tec/NRP/). They can be used as a standard and 
ensure the accuracy of any new results. As well as making these evaluation functions 
available, we have also provided the application programming interface developed in 
order to create and test the algorithms we are presenting here. For example, it is 
possible to download the software for parsing and using the data, displaying,  
analysing and manually altering solutions and the algorithms themselves. 

2.1 Hard Constraints 
In a final roster or solution, if all the hard constraints are not satisfied then the roster is 
not feasible and is thus not acceptable. There are three hard constraints: 
 

1. A nurse cannot be assigned more than one of the same shift type per day. 
2. Shifts which require certain skills can only be covered by (i.e. assigned to)  

nurses who have those skills. 
3. The shift coverage requirements must be satisfied. For example, if a certain 

day requires three night shifts then there must be three employees present at 
that time to work during that shift. Over coverage is not permitted. 

2.2 Soft Constraints 
All other rules are modelled as soft constraints. Ideally these constraints should be 
satisfied but it will almost always be necessary to violate some of them in order to 
provide a feasible solution. When a soft constraint is broken, a penalty is incurred 
which is proportional to the importance of the constraint and the severity of its 
violation. The importance of each constraint is set using weights which are user-
modifiable integer values. The higher the weight, the more important the constraint is 
relative to the other constraints. 
With permission each employee can specify which constraints they wish to see 
imposed on their work schedule and also the specific parameters associated with that 



constraint. For example, one nurse may request not to work more than five 
consecutive days whereas another may wish to work no more than four consecutive 
days. Alternatively, some nurses may have part time contracts which stipulate less 
work than full time employees and so on. The large number and variety of rules which 
can be imposed makes it a very flexible system which can be used in many different 
environments. It also makes it possible to create problem instances which vary 
significantly in size and complexity. Therefore a problem solver which is robust and 
effective over a range of instances is paramount. 
 
Some of the constraints which are considered include: 
 
 Maximum number of shifts worked during the scheduling period. 
 Maximum and minimum number of hours worked during the scheduling period or 

per week. 
 Maximum and minimum number of consecutive working days. 
 Maximum and minimum number of consecutive non-working days. 
 Maximum number of a specific shift type worked. For example, maximum zero 

night shifts for the planning period or a maximum of seven early shifts. This 
constraint can also be specified for each week. For example, a nurse may request 
no late shifts for a certain week. 

 Maximum number of weekends worked in four weeks (a weekend definition is 
also a user definable parameter i.e. Friday and/or Monday may be considered as 
part of the weekend). 

 Maximum number of consecutive weekends worked. 
 No night shifts before a weekend off. 
 No split weekends, i.e. shifts on all days of the weekend or no shifts over the 

weekend. 
 Identical shift types over a weekend. For example, if a nurse has a morning shift 

on Saturday then he/she may prefer to have a morning shift on Sunday also. 
 Minimum number of days off after night shifts. 
 Valid numbers of consecutive shift types. For example, three or four consecutive 

early shifts may be valid but two or five consecutive early shifts may not. 
 Shift type successions. For example, if shift rotation is allowed, is shift type A 

allowed to follow B the next day? 
 Maximum total number of assignments for all Mondays, Tuesdays, 

Wednesdays… For example, a nurse may request not to work on Wednesdays or 
may require to work a maximum of two Tuesdays during the scheduling period. 

 Avoid a secondary skill being used by a nurse. Sometimes a nurse may be able to 
cover a shift which requires a specific skill but they may be reluctant to do so as it 
is not their preferred duty. An example would be a head nurse not wanting to 
stand in for a regular nurse. 

 Day on/off and shift on/off requests with associated priorities. 
 
The precise definition and implementation of these constraints can be found in [51].  
 
The evaluation function used to determine the quality of a roster is the sum of all 
penalties calculated for each soft constraint violation in each nurse’s individual 
schedule. The problem objective is to find a roster with as low a penalty as possible. 
Of course, due to the often conflicting and large number of constraints there is rarely a 



perfect roster with penalty zero. Instead, we can think of this as an optimisation 
problem with the goal of minimizing the roster’s overall penalty. 
 
Let: 

penaltyr  = the penalty for roster r. 

penaltyr,n = the penalty for the schedule of nurse n in roster r. 

Nr = the number of nurses in roster r. 

∑
=

=
rN

n
n r,r penaltypenalty

1

  

The objective is to minimize penaltyr for a given scheduling period with a fixed set of 
employees, cover requirements and a specific set of soft constraints and weights. 
 
The algorithms presented in this paper are tested on ten instances which vary in the 
number of nurses, cover requirements, shift types, constraint types and priorities, 
personal requests and planning horizon. Table 1 provides some more information on 
the instances. 
 

Instance Nurses Shift types Skill levels Planning horizon 
BCV-1.8.1 8 4 2 28 days 
BCV-2.46.1 46 4 1 28 days 
BCV-3.46.1 46 3 1 26 days 
BCV-4.13.1 13 4 2 29 days 
BCV-5.4.1 4 4 1 28 days 
BCV-6.13.1 13 4 2 30 days 
BCV-7.10.1 10 6 1 28 days 
BCV-8.13.1 13 4 2 28 days 
BCV-A.12.1 12 4 2 31 days 
ORTEC01 16 4 1 31 days 

Table 1 Problem Instances 

Data sets BCV-1 to BCV-8 are all based on real world data. Data set BCV-A.12.1 is a 
fictional test problem that uses all the possible constraint types available and contains 
many conflicting requests. ORTEC01 is instance 12 for the problem presented in [18] 
(the instance which the extra tests were performed on and the one commonly used by 
ORTEC). To model the problem with this system, some of its hard constraints have 
been changed to soft constraints with weights of 10,000. Therefore all solutions with 
penalty below 10,000 are feasible solutions to the original problem (solutions with 
penalties above 10,000 are not necessarily infeasible for the original problem though). 
All these instances and the best known solutions are available at 
http://www.cs.nott.ac.uk/~tec/NRP/ . 

3 Search Neighbourhoods for Nurse Rostering 

This section describes two types of search neighbourhood that have been used to 
solve nurse rostering problems. Their applicability to the benchmark instances are 
then investigated. The results from this preliminary investigation are relevant to the 
variable depth search presented in Section 4. 



3.1 The Single Shift Neighbourhood 
Included in this category are all neighbourhoods that are identified by moves or swaps 
that change the assignment of up to two shifts, days on/off or variables at a time. 
Depending on the type of cover constraints (are there minimum and/or maximum shift 
cover requirements and are they hard or soft constraints?), these moves may involve 
either one nurse (e.g. [8, 13, 25]) or two nurses (e.g. [19, 20, 23, 31, 35, 41, 46]).  
 
In the benchmark problems, the shift cover requirements are hard constraints and 
neither over nor under coverage are permitted. Therefore, once an initial feasible 
roster is constructed, only swaps or moves between two nurses are allowed. This 
ensures that the coverage constraint is not violated. Examples of these swaps are 
illustrated in Figure 1 and Figure 2. Figure 1 shows a section of a roster where L, N, 
D and DH are shifts and G, H and A are nurses. Move a involves the swapping of 
shift L and shift N on the 5th of December between nurses G and H to give the 
resulting roster on the right. In Figure 2, move b involves the assigning of shift L to 
nurse G from nurse H on 5th December. This could be alternatively phrased as 
“swapping shift L and an empty shift between nurses G and H on the 5th of 
December.” 
 
 
 
 
 
 
 
 
 

Figure 1 Example move a in the single shift neighbourhood 

 
 
 
 
 
 
 
 
 
 

Figure 2 Example move b in the single shift neighbourhood 

 
The single shift neighbourhood is the most commonly used neighbourhood in solving 
nurse rostering problems. It is a relatively small neighbourhood and easy to 
implement in a search algorithm. Even for the largest instances examined, using 
today’s average desktop computer, this neighbourhood can be exhaustively searched 
and a local optimum can be reached quickly using a hill climber. Rosters produced 
using this approach, however, are not always of satisfactory quality and can usually 
be improved by an experienced human scheduler. Therefore, this neighbourhood is 

a 

b 



often, either incorporated into a more sophisticated method such as a metaheuristic 
and/or replaced with a larger neighbourhood. 

3.2 The Block Neighbourhood 
The single shift neighbourhood, on its own, is often not effective enough. Meyer 
auf’m Hofe [42] highlights its weakness with a specific example in which this 
neighbourhood, even if combined with a tabu list, would be unlikely to remove a 
particular violation as it requires the simultaneous change of eight (and only these 
eight) specific variables. 
This section describes a larger neighbourhood defined by moves which would have 
been able to repair that particular violation. The neighbourhoods have recently been 
incorporated into search algorithms for nurse rostering and that approach has been 
shown to be very effective. 
  
Included in this category of neighbourhoods are those defined by the swapping of all 
assignments on two or more adjacent days between two nurses. Examples of these 
swaps can be seen in Figure 3 and Figure 4. Figure 3 illustrates a move involving the 
swapping of a block of two adjacent days. On the 5th and 6th December, the N shifts 
of nurse A are assigned to nurse G and the L shifts of nurse G are assigned to nurse A. 
Here the block size is two as it involves two adjacent days. Figure 4 shows a move 
involving the swapping of a block of adjacent days of length three. Note that on 6th 
December, nurse A had no shift but this is still labelled as a swap with a block of days 
of length three. 
As the block neighbourhood is a larger neighbourhood, its practical use was 
previously restricted by computational limitations. However, the recent dramatic 
increases in computing power have made a more aggressive use of this 
neighbourhood much more viable, as will be shown. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Example move c in the block neighbourhood 

 
 
 
 
 
 
 
 
 

Figure 4 Example move d in the block neighbourhood 

c
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An early example of the use of changing blocks of shifts can be found in [33], where, 
although a block neighbourhood is not actually used, varying size blocks of shifts are 
assigned to nurses to create initial rosters. In [30], Jan et al. swap assignments on 
blocks of days between nurses as a mutation operator (called escape) in a genetic 
algorithm but again do not use it as a search neighbourhood. The first use of this type 
of swap in a search neighbourhood can be found in [20] and subsequently [16] and 
[19] in which they are called shuffle neighbourhoods. The authors commented that 
although these larger neighbourhoods were very time consuming and computationally 
intensive to use, the solutions they produced were significantly better and almost 
impossible to improve by hand. A very similar neighbourhood is also used by 
Valouxis and Housos  [50] and later, Bellanti et al. [12] also describe a 
neighbourhood search which partially uses similar moves. 
During development and testing, it was noticed that an expert human planner will 
often make improvements to a roster using similar moves. This may explain why an 
expert has such difficulty in improving a roster produced using this search 
neighbourhood.  

3.3 Comparing the Single Shift and Block Neighbourhood 
To examine how effective these neighbourhoods are and how quickly they can be 
searched using today’s desktop personal computer, some experiments were conducted 
using a simple first improvement hill climber on the benchmark instances introduced 
in section 2. (Note that it is actually a hill descender as the penalty is being minimised 
but it is referred to as a hill climber as this is, generally, a more familiar term). The 
search uses neighbourhoods defined by swaps of up to a maximum length block of 
days. The pseudocode is given in Figure 5. This pseudocode is simply to provide an 
outline of the process. The actual implementation contains many more lines of code 
that increase efficiency and avoid redundancy (e.g. not visiting a solution already 
examined, etc).  
 

1.  WHILE there are untried swaps 
2.    FOR BlockLength = 1 to MAX_BLOCK_LENGTH 
3.      FOR each employee (E1) in the roster                  
4.        FOR each day (D1) in the planning period 
5.          FOR each employee (E2) in the roster 
 
6.            Swap all assignments between E1 and E2 on D1 up  
              to D1+BlockLength 
 
7.            IF an improvement in roster penalty THEN 
8.              Break from this loop and move on to the next 
                day 
9.            ELSE 
10.             Reverse the swap 
11.           ENDIF   
 
12.         ENDFOR 
13.       ENDFOR                   
14.     ENDFOR 
15.   ENDFOR                 
16. ENDWHILE 

Figure 5 Pseudocode for the hill climber 

 
The initial roster is created using a randomized greedy assignment method. It operates 
as follows: for each shift which needs to be covered, assign it to the nurse who incurs 



the least gain in penalty for their individual schedule (or who receives the greatest 
decrease in penalty) on receiving this shift. 
In order to provide different starting solutions and allow the search to also be used 
with random restarts, the set of shifts to be assigned is randomly shuffled. The quality 
of the initial rosters created using this greedy algorithm is usually very poor. 
As there are few hard constraints, it is not difficult to construct a feasible roster. Also, 
the hard constraints are all related to coverage and it is possible to pre-calculate 
whether a feasible solution can be built. If a feasible solution does not exist, the user 
is notified that the cover requirements need to be reduced or extra staff need to be 
added. This is important as the hill climber operates over the feasible solution space. 
 

Table 2 presents the results of the hill climber (outlined in Figure 5) when the 
maximum block length parameter (MBL) is set from one to ten. Note that when 
MBL=1, it is effectively the single shift neighbourhood (assuming no more than one 
assignment per day). 
Each experiment is repeated five times using different initial rosters (the same initial 
rosters are used for each MBL setting). The best, average and worst solutions, the 
average number of solutions examined per repeat and the average computation time 
per repeat are recorded for each instance. Table 2 contains the averages of these over 
all instances (for quick reference) and the results for each instance can be found in 
Table 3. The experiments were performed using a desktop PC with an Intel P4 
2.4GHz processor. 
 

Repeats MBL Best Average Worst 
Average No. solutions 
examined per repeat 

Average computation 
time per repeat (secs) 

5 1 2064 2820 3576 49200 3.8 
5 2 1565 2245 2614 86095 7.5 
5 3 1452 1840 2224 100472 9.2 
5 4 1413 1634 1893 115241 11.0 
5 5 1253 1573 2005 127452 12.4 
5 6 1191 1570 1891 138627 13.7 
5 7 1341 1526 1829 159760 16.3 
5 8 1160 1452 1652 171433 17.7 
5 9 1165 1462 1712 183773 19.2 
5 10 1165 1458 1721 185903 19.7 

25 1 1589 2613 3888 50513 4.0 

Table 2  Results of varying MAX_BLOCK_LENGTH (MBL) 

 

Instance 

Max 
block 

length Best Ave. Worst 

Average 
No. 

solutions 
examined 

Average 
computation 

time 
(seconds) Instance 

Max 
block 

length Best Ave. Worst 

Average 
No. 

solutions 
examined 

Average 
computation 

time 
(seconds) 

ORTEC01 1 8927 14641 20192 55752 2.6 BCV-5.4.1 1 487 725 933 1560 0.1 

ORTEC01 2 5917 11046 13185 83462 4.1 BCV-5.4.1 2 193 369 633 2389 0.1 

ORTEC01 3 5120 7735 9771 109864 5.9 BCV-5.4.1 3 48 196 487 2433 0.1 

ORTEC01 4 5020 5706 6865 126689 7.1 BCV-5.4.1 4 48 108 205 2670 0.1 

ORTEC01 5 3355 5470 8045 144511 8.1 BCV-5.4.1 5 48 106 195 2680 0.1 

ORTEC01 6 2745 5303 6915 167063 9.7 BCV-5.4.1 6 48 106 195 2831 0.1 

ORTEC01 7 4257 4848 6470 173036 10.2 BCV-5.4.1 7 48 106 195 3032 0.1 

ORTEC01 8 2475 4022 4700 185363 11.1 BCV-5.4.1 8 48 106 195 3268 0.1 

ORTEC01 9 2525 4174 5295 202584 12.4 BCV-5.4.1 9 48 106 195 3452 0.2 

ORTEC01 10 2525 4131 5345 188767 11.6 BCV-5.4.1 10 48 106 195 3587 0.2 



BCV-1.8.1 1 328 491 698 9647 0.4 BCV-6.13.1 1 1024 1324 1597 19883 1.0 

BCV-1.8.1 2 291 448 650 14206 0.6 BCV-6.13.1 2 1019 1223 1287 29736 1.6 

BCV-1.8.1 3 288 332 470 20461 0.9 BCV-6.13.1 3 994 1131 1286 34222 1.9 

BCV-1.8.1 4 273 330 464 22138 1.1 BCV-6.13.1 4 954 1057 1257 41324 2.4 

BCV-1.8.1 5 287 338 470 22226 1.1 BCV-6.13.1 5 954 1057 1257 46422 2.8 

BCV-1.8.1 6 287 336 470 25884 1.3 BCV-6.13.1 6 954 1057 1257 50864 3.1 

BCV-1.8.1 7 287 337 471 30805 1.6 BCV-6.13.1 7 954 1011 1101 60173 3.8 

BCV-1.8.1 8 287 337 471 33242 1.8 BCV-6.13.1 8 954 1011 1101 64769 4.2 

BCV-1.8.1 9 287 329 471 35425 2.0 BCV-6.13.1 9 954 1011 1101 69157 4.5 

BCV-1.8.1 10 287 327 471 37639 2.1 BCV-6.13.1 10 954 1011 1101 73355 4.9 

BCV-2.46.1 1 1704 1715 1726 140592 12.4 BCV-7.10.1 1 403 555 662 10259 0.4 

BCV-2.46.1 2 1618 1674 1716 246792 24.1 BCV-7.10.1 2 381 514 606 13863 0.6 

BCV-2.46.1 3 1618 1663 1701 302478 31.4 BCV-7.10.1 3 381 505 596 18048 0.9 

BCV-2.46.1 4 1618 1663 1701 335523 35.8 BCV-7.10.1 4 381 505 596 19851 1.1 

BCV-2.46.1 5 1618 1663 1701 361902 39.5 BCV-7.10.1 5 381 505 596 21480 1.1 

BCV-2.46.1 6 1618 1663 1701 387107 42.8 BCV-7.10.1 6 381 505 596 23038 1.2 

BCV-2.46.1 7 1618 1663 1701 411298 46.4 BCV-7.10.1 7 381 505 596 24540 1.3 

BCV-2.46.1 8 1618 1663 1701 434607 49.8 BCV-7.10.1 8 381 505 596 25982 1.4 

BCV-2.46.1 9 1618 1663 1701 456895 52.9 BCV-7.10.1 9 381 505 596 27368 1.6 

BCV-2.46.1 10 1618 1663 1701 478249 55.9 BCV-7.10.1 10 381 505 596 28691 1.7 

BCV-3.46.1 1 3883 3969 4094 200929 16.8 BCV-8.13.1 1 236 268 334 17229 0.8 

BCV-3.46.1 2 3607 3675 3801 392147 37.2 BCV-8.13.1 2 148 236 333 22756 1.1 

BCV-3.46.1 3 3464 3525 3605 420806 41.7 BCV-8.13.1 3 148 198 236 28734 1.5 

BCV-3.46.1 4 3474 3507 3554 483621 49.7 BCV-8.13.1 4 148 198 235 34321 1.9 

BCV-3.46.1 5 3443 3463 3493 535836 56.8 BCV-8.13.1 5 148 198 235 37471 2.1 

BCV-3.46.1 6 3432 3463 3486 581235 62.8 BCV-8.13.1 6 148 198 235 40455 2.3 

BCV-3.46.1 7 3430 3456 3470 737642 82.7 BCV-8.13.1 7 148 198 235 43316 2.5 

BCV-3.46.1 8 3408 3446 3470 800863 90.5 BCV-8.13.1 8 148 198 235 48029 2.9 

BCV-3.46.1 9 3409 3446 3470 857518 98.4 BCV-8.13.1 9 148 198 235 50671 3.1 

BCV-3.46.1 10 3409 3454 3507 852724 99.3 BCV-8.13.1 10 148 198 235 53218 3.3 

BCV-4.13.1 1 75 110 189 12284 0.6 BCV-A.12.1 1 3570 4397 5335 23867 2.9 

BCV-4.13.1 2 17 53 75 20875 1.0 BCV-A.12.1 2 2463 3210 3858 34728 4.6 

BCV-4.13.1 3 22 54 75 21729 1.1 BCV-A.12.1 3 2433 3060 4015 45941 6.4 

BCV-4.13.1 4 22 54 75 24019 1.3 BCV-A.12.1 4 2190 3207 3980 62257 9.2 

BCV-4.13.1 5 22 52 74 31412 1.8 BCV-A.12.1 5 2275 2878 3980 70575 10.4 

BCV-4.13.1 6 22 52 74 33390 2.0 BCV-A.12.1 6 2275 3019 3980 74401 11.2 

BCV-4.13.1 7 22 52 74 35330 2.1 BCV-A.12.1 7 2265 3082 3980 78429 11.9 

BCV-4.13.1 8 15 50 74 38808 2.4 BCV-A.12.1 8 2265 3178 3980 79397 12.3 

BCV-4.13.1 9 13 49 74 45282 2.8 BCV-A.12.1 9 2265 3134 3980 89375 14.0 

BCV-4.13.1 10 13 49 74 47293 3.0 BCV-A.12.1 10 2265 3134 3980 95509 15.0 

Table 3 Results of varying MBL in the hill climber (5 repeats for each instance) 

 

Instance Max block length Best Ave. Worst 

Average No. 
solutions 
examined 

Average 
computation 

time (seconds) 

ORTEC01 1 5431 12505 21199 56621 2.6 

BCV-1.8.1 1 312 432 698 9168 0.4 

BCV-2.46.1 1 1634 1694 1799 158093 14.2 

BCV-3.46.1 1 3694 3899 4094 199456 16.9 

BCV-4.13.1 1 18 135 411 12140 0.6 

BCV-5.4.1 1 194 714 1099 1676 0.1 



BCV-6.13.1 1 1024 1360 1749 19574 1.0 

BCV-7.10.1 1 403 535 742 9379 0.4 

BCV-8.13.1 1 149 243 379 16799 0.8 

BCV-A.12.1 1 3030 4609 6708 22223 2.8 

Average  1589 2613 3888 50513 4.0 

Table 4 Hill climber, 25 repeats with MBL=1 

 
The results in Table 3 and Table 2 show that the single shift neighbourhood (i.e. 
MBL=1) is not as effective as when MBL>1. It is logical to question whether this is 
simply due to less solutions being examined when MBL=1. To provide a fairer 
comparison, the experiments were repeated for MBL=1 but with 25 instead of 5 repeats 
(Table 4 and the bottom row of Table 2). This ensures that the searches with MBL=1 
receive at least the same time (and in most cases more) as each experiment with 
MBL>1. Although giving a longer computation time did improve the best solution 
found, it was still worse on all instances than MBL=2 and significantly worse than 
MBL>5.  
As shown, increasing MBL increases the quality of the results but at the cost of extra 
computation time. However, when MBL>8, any increases in performance become less 
clear. Although MBL could range up to the number of days in the planning period, the 
results suggest that setting MBL>8 does not yield better results, especially in relation to 
the extra computation time required. In fact, when MBL>8 the results deteriorate 
slightly for some instances. This would have been a strange result if line 1 of the 
pseudocode was not present. However, what is happening is that a move is being 
made when the block length=9 that would obviously not have been made if MBL<9 and 
hence in the next iteration of the loop at line 1 the current solution is slightly different. 
It can also be seen that the increase in computation time is approximately linear in 
relation to MBL.  
  
On average, increasing MBL will yield better solutions. However, if the results for 
each instance are studied, the benefits of using larger blocks on some instances is less 
noticeable. For example, on instances BCV-2.46.1 and BCV-7.10.1, MBL=2 is only 
slightly better than MBL=1 and increasing MBL above 3 gives no further improvement. 
Similarly, increasing MBL above 5 for instance BCV-5.4.1 is not worthwhile. Although 
the reasons for this are not obvious, it is thought to be linked to which types of 
constraints and their priorities are used in the schedules. Although it may be possible 
to estimate the suitability of neighbourhoods for a particular instance based on its 
constraints, it would also be difficult, as potentially each nurse could request a 
different set of constraint types with different parameters for any one scheduling 
period. 
 
The computation times for each instance range from < 1 second to approximately 90 
seconds. As would be expected, the longer computation times are required for the 
rosters with more employees, longer planning horizons and also those instances which 
utilise a larger set of the available soft constraint types for each employee (e.g 
instance BCV-A.12.1). 
 
As can be seen, on the machine used, the search, on average, examines approximately 
10,000 solutions per second. Examining the results for each instance reveals that the 
solutions examined per second ranges from approximately 28,000 for the instances 



with fewer soft constraints to around 6,000 for the instances which use all the 
available soft constraint types. Evaluating soft constraints is by far the most time 
consuming function in the search and so a large amount of effort was spent 
streamlining them to ensure that they were fast and efficient as well as accurate. It is 
possible to obtain large increases in search performance through writing faster code 
than any new heuristic or search mechanism may be able to achieve. This is not 
always appreciated and the challenge and importance of writing fast and efficient 
evaluation functions is often underestimated. Also, metrics such as the performance 
per number of solutions evaluated are often analysed less, if at all. In the results, the 
number of rosters examined as well as computation times are provided. In the authors’ 
opinion this is a more revealing, reliable and future-proof measure of a search 
method’s performance.   

4 The Variable Depth Search 

As the results in the previous section show, using today’s average desktop PC, a local 
search employing the block neighbourhood can be completed on the larger instances 
in less than 90 seconds. These solutions are very difficult to improve by hand. 
However, due to the complexity of the problems, they are still very often local optima 
(albeit high quality ones). Therefore, end users may wish to use idle computer time 
(e.g. during a lunch break or over night) to try and find even higher quality rosters. 
Perhaps the simplest way to provide this option is by restarting the hill climber as 
many times as possible in the allotted time with different initial rosters, in the form of 
a basic iterated local search [37]. This is something that was tested and the results are 
provided in section 5. However, the main focus of this chapter is a variable depth 
search which will now be introduced. 
 
The first step of the algorithm is to create an initial roster. This is done using the 
greedy assignment method introduced in section 3.3. As mentioned, these initial 
rosters can be constructed very quickly (in less than a second) but are generally of 
poor quality. It was found, however, that the quality of the initial roster had relatively 
little impact on the final roster. Once the initial roster is created, it is possible to 
proceed with the variable depth search which, like the hill climber, also operates over 
the feasible solution space. Figure 6 provides an outline of the algorithm. 
The search is similar to a method used when attempting to manually improve rosters. 
When improving rosters by hand it was observed that first we would try and improve 
one nurse’s individual schedule (that is lower the penalty for that nurse’s schedule). 
Improving this nurse’s schedule would usually be at the expense of another nurse so 
we then try and improve their schedule. If the second nurse’s schedule is improved it 
may be at the expense of a third nurse’s schedule so we then move on to the third 
nurse and so on until (hopefully) we have an overall roster penalty that is lower than 
the original penalty. If not, we would reverse all the changes we have just made and 
try a different path. This is the basic idea behind the algorithm. 



penaltyr    = the penalty for roster r. 

penaltyr,n = the penalty for the schedule of nurse n in roster r. 
 
0.   set best roster    := the current roster 
     
1.   set current roster := an unvisited neighbour in neighbourhood 
                           for best roster 
         
2.   if no unvisited neighbour available 
         stop and return best roster 
         

3.   if penaltycurrent roster < penaltybest roster   
         goto 0. 
             
4.   if neither of the penalties decrease for the individual schedules of 
     the two employees involved in the swap OR maximum depth <= 1 
         goto 1. 
             
5.   set E1 := the employee with increased penalty 
     set current depth := 1 
            
6.   In the neighbourhood for the current roster where considering swaps  
     of blocks between employee E1 and all other employees (E2) 
 
     set current roster := neighbouring roster with lowest penalty where   

     penaltyneighbour < penaltybest roster or      

     penaltyneighbour - penaltyneighbour,E2 + penaltycurrent roster,E2  

     < penaltybest roster 
      
7.   if no such neighbour   
         goto 1. 
8.   else if current roster's penalty < best roster's penalty 
         goto 0. 
9.   else if current depth < a preset maximum depth 
         set E1 := E2 
         set current depth := current depth + 1; 
         goto 6. 
10.  else 
         goto 1. 

Figure 6 Variable depth search outline 

 

The neighbourhoods referred to in Figure 6 are identified by swaps of blocks up to a 
maximum block length (MBL). The neighbourhood at step 1 is defined by all possible 
swaps of blocks, on all days of the planning period, between all nurses. At step 6, the 
swaps are just between two nurses on all days of the planning period. It was found to 
be generally more efficient to set MBL at step 1 lower than at step 6 (e.g at step 1, use 
2 or 3 and at step 6, use 5 or 6). 
 
At various points in the algorithm (e.g. steps 4 and 6), it is necessary to analyse the 
change in penalty for a nurse’s individual schedule after a swap has been performed. 
After any swap, at least one but no more than two of the nurse's individual schedules 
will have been altered. However, the penalties for other nurses’ schedules may also 
have changed even though their schedule has not been modified. This occurs in 
instances which use the so called ‘vertical’ constraints of tutorship and ensuring that 
certain nurses work separately. Therefore, when analysing the change in penalty for 
any individual nurse’s schedule that has just been altered, what we actually use is the 



net change in penalties for this nurse and all other nurses that are directly linked to 
this nurse by ‘vertical’ constraints. 

4.1 Heuristics 
It was stated that the search operates over the feasible solution space. However, it was 
discovered that it was beneficial to treat the hard constraint that a nurse must have the 
skills required to perform a shift as a soft constraint. This can be achieved by 
assigning a sufficiently high weight to the hard constraint violation (e.g. giving it the 
same value as the penalty of the initial roster) thus ensuring that a solution with this 
constraint violated will not be returned. Using it as a soft constraint though, allows 
greater exploration of the search space. This happens because rosters with this hard 
constraint violated are sometimes used as intermediate solutions in a chain of moves 
and a better local optimum may be reached via them. 
 
Step 6 is perhaps the most important step in the algorithm. Step 6 specifies which 
moves to examine as potential candidates to be added to the current chain of moves 
and also defines the rule for deciding which one (if any) to select. As outlined in 
Figure 6, a swap is only selected as a potential move to add to the current chain if  
ignoring the change in N2's penalty, the neighbour’s penalty is less than the best 
roster's penalty. This rule is similar to, and inspired by, the ‘Gain Criterion’ of the 
Lin-Kernighan algorithm for the travelling salesman problem [36]. In section 5, the 
results of a number of experiments are presented in which this rule is removed to 
investigate its benefit. 
 
The number of moves to examine in order to select candidates for continuing the 
chain can have a significant effect on the performance of the algorithm. If too many 
moves are tested, then the algorithm’s run time will increase. If too few are selected, 
then there is a smaller chance of a successful one being found and the algorithm will 
become less effective. In Figure 6, all swaps up to a maximum block length, on all 
days of the planning period, between one nurse and all the others are tested. Reducing 
the run time by limiting the number of nurses to test swaps between and reducing the 
number of days adjacent to the swap at step 1 over which to test swaps was evaluated. 
As expected, the run time was improved but at the cost of roster quality. To try and 
increase efficiency, two heuristics for selecting candidate moves were developed and 
tested instead. 
 
In the first heuristic (violation flag heuristic), all days which need changing either 
through the removal, addition or changing of shift assignments, in order to remove a 
soft constraint violation are flagged during penalty recalculations. Only the swaps 
which involve at least one of these days are then tested. This heuristic is also applied 
at step 1. Only focusing on parts of a solution that have violations and need repairing 
is a common heuristic. For example, Nonobe and Ibaraki [45] use a similar heuristic 
in a tabu search approach tested on a nurse rostering problem formulated as a 
constraint satisfaction problem. 
 
In the second heuristic (worsened days heuristic), an array of penalties due to soft 
constraint violations for each day is maintained for each nurse’s schedule during 
penalty calculations. Using these arrays, the moves in step 6 are then restricted to only 
those blocks that contain days which were made worse (i.e. penalty increased) after 



the last move. This is a more restrictive heuristic as days which contain violations will 
be ignored if they were not affected by the last swap in the chain. 

4.2 Predefined Run Time 
The running time for the algorithm depends on the size of the neighbourhoods at steps 
1 and 6, the maximum depth used at step 9 and the structure of the instance being 
addressed. The size of the neighbourhoods at steps 1 and 6 depends upon the number 
of nurses, the number of days in the planning period and the maximum block length. 
The effects of the third factor (the instance structure) on the running time cannot be as 
easily predicted as factors such as the number of nurses and days. For some instances, 
it is possible that the structure (determined more by the soft constraints and their 
weights) is such that there is very often a valid neighbour found at step 6 with which 
to replace the current roster but which is not better than the best roster. This can mean 
that the search sometimes reaches great depths which obviously affects the running 
time. 
To reduce this effect, a maximum depth which is set beforehand is used at step 9. 
Initially the depth was set using a trial and error method of running the algorithm for a 
short time and observing its progress on the particular instance. Then altering the 
maximum depth value until a suitable setting is found (that is estimated) will restrict 
the algorithm to a satisfactory running time. This is obviously not a suitable approach 
for practical use. Therefore, an additional mechanism was added which takes the 
preferred running time as a parameter and attempts to use that time efficiently. 
 
This mechanism works as follows: for the algorithm to finish, every neighbour in the 
neighbourhood at step 1 needs to be examined and potentially used as the first 
solution in a chain of moves. It is possible to calculate the size of the neighbourhood 
at step one using the number of nurses, the maximum block length and the number of 
days in the planning horizon. Given a preferred running time and the number of 
solutions to evaluate at step one (updated each time a new best solution is found), it is 
possible to calculate an average time to spend using each neighbour at step one as the 
first solution in a chain. Then at step 9, instead of testing whether a maximum depth 
will be exceeded in continuing the chain, we test whether the average time per chain 
will be exceeded if it continues.  
In the results section where this heuristic is not used but a maximum running time is 
set, the search immediately terminates and returns the best solution when the time 
limit is reached. If the algorithm naturally terminates and the preferred running time 
has not been exceeded, then at step 2, instead of returning the best roster, a new initial 
roster is created and the algorithm restarts at step 0.  
 
Figure 7 shows an example of an improving chain of moves. The change in the roster 
consists of seven moves which, when performed simultaneously, provide an overall 
reduction in the roster’s penalty. It can be seen that the second nurse of a swap is 
always the first nurse in the next swap. Note that Figure 7 is just used to illustrate the 
idea of a chain of moves. For the roster shown (which is far from optimal), there are 
many other chains which would also improve the roster. 
 



 
 

Figure 7 Example chains of swaps 

 
From observing the logs after searches, the lengths of improving chains of moves 
varies greatly. Note that poor rosters are easily improved by single moves. When the 
local optima start to be found less frequently, (and the penalty is approaching better 
values) even for the smaller instances, improving chains of moves with lengths over 
one hundred are not uncommon. 

4.3 Efficient Implementation 
At step 6, there is a possibility that a neighbouring solution will be selected that has 
been visited previously and cycling could occur. Two different methods were tested to 
remove this risk. In the first method, a history of solutions visited along the current 
path (i.e. since the last use of step 1) is maintained and used to ensure that they are not 
revisited. This is fast and prevents cycling but does not guarantee that solutions are 
not revisited at other points in the algorithm, for example visiting a solution at step 1 
that has already been used at step 6. The second method maintains a hash table of all 
solutions visited during the run of the algorithm and so also prevents all solutions 
being revisited. Testing showed that the first, simpler method, produced better results. 
This appears to be because the probability of visiting a duplicate solution at the points 
which the first method does not prevent is small and much lower than the probability 
of cycling at step 6. Therefore, using the faster method which prevents the majority of 
cycling and revisiting duplicate solutions was more efficient than the slower approach 
which guaranteed no cycling or duplicate paths. 
 
As discussed earlier, increases in performance can be achieved as effectively through 
making the algorithm faster and more efficient as by using better heuristics. We have 
already mentioned the importance of avoiding cycling. There are also some other 



efficiency measures which are worth highlighting. Firstly, when a nurse’s schedule 
has been altered it is only necessary to re-evaluate their schedule and any other 
nurses’ schedules which may be linked by vertical constraints to recalculate the new 
roster’s penalty. Secondly, by far the most time consuming operation is calculating 
penalties (i.e. soft constraint evaluations). If there is a likelihood that a solution will 
be returned to, then the algorithm caches penalties to avoid having to recalculate 
them. Finally, some soft constraint calculations can be speeded up by using data 
structures that are modified as assignments are made. A simple example is to update 
the total number of hours worked when a shift is (un)assigned rather than to add all 
the hours up when calculating the penalty. Some of the more complicated constraints 
benefit from a similar approach. 

5 Results 

The algorithm was tested on the ten publicly available data sets introduced in section 
2.  

5.1 Comparing Heuristics 
In the experiments, the following parameters were used: Maximum depth = 1000, 
maximum block length at step 1 = 2,  maximum block length at step 6 = 5. As 
described, if the algorithm finishes before the maximum running time is reached, a 
new initial solution is constructed and the search restarts. 
Table 5, Table 6, Table 7 and Table 8 contain the results of the variable depth search 
when different heuristics are used. Predefined maximum run times of 1 minute, 2 
minutes and 5 minutes were tested with each instance and repeated five times using 
different random seeds (but which were the same for each corresponding trial). The 
best, worst and average of these runs were recorded. The penalties in Table 5 are the 
averages over all instances. The results for each instance given in Table 6, Table 7 
and Table 8. 
 
The heuristics are summarised below: 
 
No heuristics Step 4 is removed and step 5 is applied twice but with E1 set as the 

other nurse each time. At step 6 the only rule is to select the best 
neighbour. 

PG Partial gain heuristic (only add a swap to the end of the current chain if 
it satisfies the partial improvement criterion). 

VF Violation flag heuristic (only test swaps which include at least one day 
which is flagged as having a violation). This is used at steps 1 and 6. 

WD Only swap worsened days heuristic (only test swaps which include at 
least one day which has a violation and the violation’s penalty was 
increased or the violation occurred after the last swap). This is used at 
step 6. 

TR Time restriction heuristic (ensure that a pre-calculated average amount 
of time is spent on every chain). 

ILS Hill climber with restarts. Maximum depth is set to 1 and maximum 
block size at step 1 is increased to 5. 

 
 1 Minute 2 Minutes 5 Minutes 

Heuristics Best Avg. Worst Best Avg. Worst Best Avg. Worst 



No heuristics 1390 1561 1879 1196 1454 1825 1154 1394 1766 
PG 917 1156 1461 888 1078 1271 872 1034 1225 
VF 1222 1629 2050 1113 1329 1611 973 1111 1232 
WD 1046 1241 1515 1008 1131 1251 972 1087 1234 
PG + VF 1003 1228 1680 894 1163 1619 872 1016 1303 
PG + WD 900 1016 1205 895 973 1083 877 946 1031 
TR 1153 1454 1829 1175 1450 1654 1008 1232 1386 
TR + PG + VF 1014 1122 1277 888 994 1141 874 978 1141 
TR + PG + WD 899 1068 1260 862 935 1027 858 889 938 
ILS 1164 1266 1405 1048 1174 1290 1012 1067 1161 

Table 5  Comparison of heuristic combinations 

 
Time restriction = 1 minute. Max. depth = 1000. Max. block length at step 6 = 5.  Max. block  length at 

step 1 = 2. 

    
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 5768 2358 6560 3234 3347 1103 4605 2242 1910 3573 
 Best 4826 506 3245 1655 1421 425 2746 1430 555 2825 

BCV-1.8.1 Average 263 263 267 265 263 259 278 257 261 266 
 Best 255 253 259 257 254 254 271 254 255 261 
BCV-2.46.1 Average 1679 1667 1643 1662 1659 1683 1657 1605 1598 1641 
 Best 1653 1616 1595 1633 1616 1646 1618 1593 1574 1618 
BCV-3.46.1 Average 3570 3478 3546 3515 3501 3481 3588 3477 3411 3464 
 Best 3483 3411 3456 3505 3460 3422 3531 3442 3380 3443 
BCV-4.13.1 Average 11 13 10 11 11 10 22 11 11 12 
 Best 10 10 10 10 10 10 11 10 10 11 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 941 873 793 770 814 769 844 768 770 908 
 Best 827 768 768 768 768 768 769 768 768 822 
BCV-7.10.1 Average 419 455 385 384 383 384 392 384 384 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 180 164 148 148 148 148 196 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
BCV-A.12.1 Average 2731 2240 2890 2370 2103 2271 2912 2284 2135 2215 
 Best 2265 2033 2309 2050 1919 1900 2009 2068 1870 2085 

Table 6 Variable depth search heuristics with max. run time 1 minute 

 
Time restriction = 2 minutes. Max depth = 1000.  Max. block length at step 6 = 5.  Max. block length at 

step 1 = 2. 

  
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 5023 1931 4246 2529 2893 860 4990 1262 868 2713 
 Best 3110 485 2450 1605 520 425 3099 470 480 1691 
BCV-1.8.1 Average 263 261 265 262 260 255 269 257 257 265 
 Best 255 252 257 257 254 253 263 253 253 261 
BCV-2.46.1 Average 1679 1664 1642 1652 1649 1680 1627 1597 1600 1620 
 Best 1653 1616 1595 1633 1596 1646 1616 1572 1574 1615 



BCV-3.46.1 Average 3486 3433 3477 3433 3477 3457 3523 3410 3380 3446 
 Best 3449 3392 3419 3414 3399 3372 3479 3380 3338 3413 
BCV-4.13.1 Average 11 11 10 11 10 10 11 11 10 12 
 Best 10 10 10 10 10 10 10 10 10 11 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 904 842 780 769 768 769 836 768 768 889 
 Best 827 768 768 768 768 768 774 768 768 822 
BCV-7.10.1 Average 419 437 384 384 382 384 403 384 384 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 164 148 148 148 148 148 148 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
BCV-A.12.1 Average 2540 2007 2293 2071 1992 2115 2647 2051 1882 2213 
 Best 2075 1775 2050 1819 1820 1900 1928 1845 1620 2085 

Table 7 Variable depth search heuristics with max. run time 2 minutes 

 
Time restriction = 5 minutes. Max depth = 1000.  Max. block length at step 6 = 5.  Max. block length at 

step 1 = 2. 

  
No 

heuristics PG VF WD 
PG + 
VF 

PG + 
WD TR 

TR + 
PG + 
VF 

TR + 
PG + 
WD ILS 

ORTEC01 Average 4763 1785 2421 2234 1570 857 3150 1147 448 1901 
 Best 3000 460 1390 1410 435 425 1420 360 420 1590 
BCV-1.8.1 Average 259 258 262 255 255 254 264 257 254 263 
 Best 254 252 256 253 253 253 255 253 253 257 
BCV-2.46.1 Average 1664 1654 1621 1635 1647 1669 1622 1596 1586 1607 
 Best 1633 1614 1595 1594 1595 1613 1595 1572 1572 1595 
BCV-3.46.1 Average 3468 3404 3465 3392 3448 3423 3443 3392 3378 3427 
 Best 3427 3374 3411 3382 3399 3372 3399 3347 3355 3413 
BCV-4.13.1 Average 11 11 10 10 10 10 12 10 10 11 
 Best 10 10 10 10 10 10 10 10 10 10 
BCV-5.4.1 Average 48 48 48 48 48 48 48 48 48 48 
 Best 48 48 48 48 48 48 48 48 48 48 
BCV-6.13.1 Average 857 818 768 769 768 768 814 768 768 853 
 Best 768 768 768 768 768 768 770 768 768 777 
BCV-7.10.1 Average 401 401 382 383 382 383 384 383 383 381 
 Best 381 381 381 381 381 381 381 381 381 381 
BCV-8.13.1 Average 148 148 148 148 148 148 148 148 148 148 
 Best 148 148 148 148 148 148 148 148 148 148 
BCV-A.12.1 Average 2320 1814 1985 2000 1881 1900 2437 2028 1867 2034 
 Best 1869 1664 1720 1729 1679 1750 2053 1849 1620 1900 

Table 8 Variable depth search heuristics with max. run time 5 minutes 

 
The results indicate that the best combination of heuristics is TR+PG+WD. The better 
results all use PG. TR is improved if combined with other heuristics and similarly VF 
and WD also perform better when not used on their own. As would be expected, VF 
and WD perform similarly (WD is a more restrictive form of VF). ILS performs 
similarly to TR, VF and WD when they are used on their own. All other combinations 
outperform ILS. 
Examining the results for each instance is also interesting. VF is very effective on 
instance BCV-4.13.1, even when used on its own and WD+PG works well on 



instance ORTEC01. However, we were unable to draw any definite conclusions on 
why this should be the case after examining the characteristics of these instances more 
closely. Due to its simplicity ILS is able to examine more solutions in the allocated 
time but its lack of heuristics makes it less effective.  

5.2 Comparisons with Other Methods 
Brucker et al. [14] developed a heuristic constructive approach and tested it on the 
benchmark instances. As it is a constructive method it is not possible to provide a 
comparison to the variable depth search by using the number of solutions examined 
metric. However, their experiments were performed on the same machine and a 
comparison can be provided by using computation times. The results in Table 9 are 
Brucker et al’s best results from all experiments. The total computation time in 
obtaining these solutions for each instance was then set as the maximum run time for 
the variable depth search with the heuristic combination TR+PG+VF.  
Burke et al’s result for ORTEC01 using the hybrid variable neighbourhood search 
[17] had a computation time of 12 hours. The result for the variable depth search on 
this instance is the best of the five, five minute tests using the heuristic combination 
TR+PG+VF.  
As can be seen, the variable depth search outperforms the constructive method, over 
the same computation times, on all instances except one, on which they are equal. It 
also beats the hybrid method of Burke et al. on instance ORTEC01. 
 

 Time Brucker et al. [14] Burke et al. [17] Variable Depth Search 

ORTEC01 12 hrs - 541 360 
BCV-1.8.1 136 sec 323 - 253 
BCV-2.46.1 3424 sec 1594 - 1572 
BCV-3.46.1 2888 sec 3601 - 3324 
BCV-4.13.1 208 sec 18 - 10 
BCV-5.4.1 16 sec 200 - 48 
BCV-6.13.1 304 sec 890 - 768 
BCV-7.10.1 216 sec 396 - 381 
BCV-8.13.1 224 sec 148 - 148 
BCV-A.12.1 944 sec 3335 - 1843 

Table 9  Comparison of VDS with other algorithms 

To provide further comparisons, the hybrid tabu search of Burke et al. [16, 20] was 
implemented and tested on the benchmark data sets. The best version of their tabu 
search (TS2) was applied five times to each instance. Table 10 contains the best and 
average results. The average execution time on each instance was also recorded. The 
variable depth search was then set a maximum run time identical to that used by the 
tabu search for each instance. Five repeats of the variable depth search were then 
performed to obtain average and best results. Heuristics TR+PG+WD were used. 
 

  Variable depth search TS2 [16, 20]   
Instance Best Average Avg. Evals. Best Average Avg. Evals. Time (secs) 
ORTEC01 480 1120 1,852,788 1581 3201 2,363,828 108 
BCV-1.8.1 262 269 159,379 293 350 140,690 9 
BCV-2.46.1 1574 1593 1,563,865 1573 1596 1,557,905 167 
BCV-3.46.1 3334 3346 4,486,399 3410 3453 5,088,206 427 
BCV-4.13.1 10 11 152,182 11 25 150,639 9 



BCV-5.4.1 48 48 21,208 48 48 17,580 1 
BCV-6.13.1 769 817 356,891 1010 1154 345,595 24 
BCV-7.10.1 381 427 117,224 391 458 93,817 7 
BCV-8.13.1 148 148 248,927 148 165 215,524 15 
BCV-A.12.1 1835 1942 649,926 2065 2831 718,354 108 

Table 10  Comparison of the variable depth search with a hybrid tabu search 

 
The results in Table 9 and Table 10 show the variable depth search nearly always 
outperforms or is equal to previous methods in comparable tests over all instances. 
The only time it was beaten was when TS2 found a best solution for BCV-2.46.1 with 
penalty 1573. The variable depth search could still manage a best with penalty 1574 
though. Note that the variable depth search is actually dynamically adjusting to the 
run time of the other approaches.  

5.3 Longer Computation Times 
Further experiments were conducted to examine the potential benefit of a longer 
execution time. The variable depth search with the same parameters as before and 
using heuristics TR+PG+WD was tested on each instance with a time limit of 1 hour. 
ILS was also tested for comparative purposes. 
 

  TR+PG+WD ILS 
  Pen Evals Pen Evals 
ORTEC01 435 58,703,568 630 69,151,556 
BCV-1.8.1 254 62,769,622 255 72,216,494 
BCV-2.46.1 1574 29,767,138 1594 39,255,535 
BCV-3.46.1 3302 36,422,606 3414 42,504,506 
BCV-4.13.1 10 58,613,414 10 68,301,984 
BCV-5.4.1 48 73,021,195 48 92,071,328 
BCV-6.13.1 768 54,683,305 814 62,509,316 
BCV-7.10.1 381 59,704,319 381 69,957,265 
BCV-8.13.1 148 59,084,678 148 66,960,140 
BCV-A.12.1 1564 23,675,881 1808 25,506,048 
Average 848   910   

Table 11  Experiments with VDS using longer computation times 

The increase in computation time leads to an improvement for both methods. Again 
the simpler ILS examines more solutions in the allotted time but is still not as 
effective as the variable depth search. In fact, ILS after one hour on each instance is, 
on average, still worse than the best of five, one minute repeats of the variable depth 
search with heuristics PG + WD. 

6 Conclusions 

This paper has reviewed search neighbourhoods that have been previously used to 
solve nurse rostering problems. They were tested using benchmark nurse rostering 
problems and based on the results, a variable depth search was created. 
The block neighbourhood is very effective for the majority of the instances. Today’s 
technology allows these larger neighbourhoods to be exhaustively searched very 
quickly. Even a simple hill climber which uses these neighbourhoods will produce 



satisfactory rosters and combining the hill climber with the greedy construction, 
restart method further improves the quality of solutions produced. 
However, the variable depth search can still improve upon this basic iterated local 
search. The variable depth search works by chaining together the block moves using a 
number of heuristics to select the next move (link in the chain). The results show the 
best combination of heuristics to use is PG (positive gain criterion) with TR (time 
restriction heuristic) and WD (selecting moves on days that have violations which 
occurred after the last move). The time restriction heuristic is used when end users 
specify a maximum run time. The algorithm then dynamically adjusts in order to use 
the limited time more effectively. The ability to react to a predefined run time limit is 
a particularly useful and novel feature which has also been recently appearing in 
search algorithms for other problem domains e.g. educational timetabling [15]. 
It is also worth noting that although the variable depth search is more effective, it is 
also more complicated to implement with an increased potential for introducing 
errors. 
 
All the test instances, best solutions and source code for the algorithms in section 5 
are all publicly available at the research website 
(http://www.cs.nott.ac.uk/~tec/NRP/). 

7 Suggestions for Future Work 

It is possible that the iterated local search can be improved by using more 
sophisticated heuristics for introducing diversification than the greedy re-construction 
method. The hill climber using the block neighbourhoods or the variable depth search 
could also be used in a population based approach such as a memetic algorithm [34] 
or a scatter search [29] as the means for introducing diversification. 
Specific neighbourhoods (i.e. maximum block size settings) and heuristics are 
particularly effective on certain instances. A method which can exploit this by, for 
example, intelligently selecting neighbourhoods and heuristics, may be able to 
contribute gains in performance. One possibility may be an algorithm which runs 
some short preliminary tests on the instance, testing different parameters and 
heuristics in order to estimate a good set of parameters for the variable depth search. 
An alternative approach may be to dynamically adjust the algorithm’s set of heuristics 
and parameters as the search progresses. This is somewhat akin to hyperheuristics [22, 
48].  
We also plan to create more data sets taken from real world rostering scenarios which 
along with any new best known solutions will be published on the research website. 
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