Problem Model for Nurse Rostering Benchmark
Instances

Edmund K. Burke!, Tim Curtois', Rong Qu', and Greet Vanden-Berghe?

1" ASAP, School of Computer Science,
University of Nottingham, Jubilee Campus, Nottingham, UK
2 KaHo St.-Lieven Gebr. Desmetstraat 1 9000 Gent, Belgium

Abstract. This document describes the model used in the nurse roster-
ing data sets found at http://www.cs.nott.ac.uk/ tec/NRP/ The model
is based on and very similar to ANROM (Advanced Nurse Rostering
Model) [1].

1 Plane, nurse rostering system for Belgian hospitals

ANROM was created during the development of the automated rostering mod-
ule of Plane. Plane is a commercial software system developed in a collaboration
between Impakt N.V. and GET for assistance in hospital employee scheduling.
Plane arose from the need for automated rostering assistance in Belgian health-
care organisations. In such a rostering problem, personnel requirements for every
skill category have to be fulfilled over a fixed period in time, while respecting a
number of constraints that limit the personal assignments.

The initial version of Plane was first implemented in a hospital in 1995 but the
system evolved to cope with the new and more complex real-world problems
that keep appearing. Over 40 hospitals in Belgium, of which some have about
100 wards, replaced their time consuming manual scheduling with this system.
Although the problem is user-defined to a large extent, the software has to be
efficient in different settings. Every specific hospital ward should be able to for-
mulate its problem within the restrictions of the model described in the following
sections.

2 Dimensions

2.1 Personnel

Hospitals are organised in wards with fixed activities, usually a settled location,
and, for the most part, a permanent team of nurses. Although practical situations
often allow people to migrate to another ward whenever a personnel shortage is
unsolvable, the personnel rostering problem in this research normally concerns a
group of personnel belonging to the same ward. Planning the different hospital
wards reduces the complexity of the problem considerably.

In the personnel rostering model of this research, the number of personnel mem-
bers is user definable. It is not the result of calculations within the planning
algorithm. Staffing considerations and decisions on the capacity in terms of beds
and patients, are beyond the competence of the short-term timetablers in Bel-
gian hospitals. The number of people P in a ward varies in practice from about
20 to over 100.

2.2 Skill categories

Personnel members in a ward belong to skill categories. The division into cate-
gories is based upon the particular level of qualification, responsibility, job de-
scription, and experience of the personnel. Typical categories in hospitals are:
head nurse, reqular nurse, junior nurse, ambulance driver, caretaker, cleaner, etc.
The groups are called ‘grades’ in some other applications. In our model, there
are Q) different skill categories. Each personnel member p (1 < p < P) belongs
to one skill category g,.

The approach in ANROM allows for a personalised organisation of substitution
among skill categories. Rather than strictly disjunctive skill categories or hierar-
chical substitutability (in which higher skilled people can replace less experienced
colleagues), we opted for a solution that is closer to the reality in hospitals. For
example, a particular skill category might be a class of junior nurses. It might
be the case that we could allocate someone in the ward manager’s category to
a junior shift on a given day. In practice, very senior staff are usually reluctant
to stand in for junior staff. It is also the case that, in practice, a regular (not a
junior) nurse will temporarily stand in for a head nurse.

The problem of replacing people is solved in ANROM by assigning alternative
skill categories to certain people. People with more experience or who have taken
some exams, can be substitutes for higher skill categories. The nurses who might
replace a head nurse, for example, normally are a couple of senior nurses who
know everything about the working of the ward. We denote by QA, the list of
alternative skill categories for person p. The number of elements in the list is 0
when the person p has no permission to replace people from other skill categories
than ¢, and QA, contains @) — 1 elements if p can do the work of any other skill
category in the ward.

2.3 'Work regulations

Cyclical schedules obey very strict patterns. They are applied in many personnel
rostering environments but are very impractical in real healthcare environments.
In our model, hospital personnel have work regulations or contracts with their
employer. Most organisations allow several job descriptions such as part time
work, night nurses’ contracts, weekend workers, etc. These regulations involve
different constraints but they can make the schedules much more flexible. More-
over, very personal arrangements like ‘free Wednesday afternoons’ or ‘refresher
courses’ at regular points in time, etc can easily be formulated. It is not unlikely
to have personalised contracts for the majority of personnel members in Belgian

hospitals.
The different work regulations are denoted by w (1 < w < W) in this research.
For every personnel member p, the work regulation is denoted by w,. .

2.4 Shift types

A shift type is a predefined period with a fixed start and end time in which
personnel members can be on or off duty. Many continuously working organisa-
tions schedule three typical shift types called morning, late and night shift. This
is the way that manufacturing generally works. However, these working hours
cannot cover the personnel requirements of hospitals in practice. Moreover, all
the possible kinds of part time work require a variety in start and end times and
in shift length. There are S shift types per ward. Each shift type s has a start
time shift_starts, an end time shift_ends, and a duration shift_duration,. Table
1 presents a simplified example of a set of shift types in a ward. A shift type

l H ‘Start‘ End ‘
M||morning shift|06:45(14:45
L ||late shift 14:30(22:00
N ||night shift |22:00({07:00

Table 1. Example of shift types

does not always involve continuous activity between the start and the end time,
and hence shift_durations is not necessarily equal to shift_ends; — shift_starts.
Examples of such shift types are those in which a long break enables personnel
to have lunch at home, or guard duties, which require availability from the per-
sonnel during a longer period than the actual time which is counted as working
time.

2.5 Planning period

Planning periods for nurse rostering vary from a couple of days to a few months.
The length of the period is expressed as a number of days D, or a number of
assignment units 7' (explained in Section 2.6). Since cyclical rosters are not com-
mon at all, it is important for individual employees to know their schedule some
time in advance. Long term scheduling, on the other hand, should not be too
detailed because the personnel demand and personal preferences fluctuate and
are not predictable but for the near future. In this model, we always consider
planning periods which start on Monday and end on Sunday, no matter what
the duration (number of weeks) is.

Short planning periods enable the search algorithms to find good quality results
much faster than longer planning periods. However, very short planning periods

reduce the possibility of guaranteeing fairness among personnel members. Some
situations require shorter planning periods. Examples are unexpected changes in
the requirements or the constraints. In such cases, the personnel manager tends
to prefer the fewest modifications possible in the people’s schedules.

ANROM provides some planning procedures for organising rescheduling pro-
cesses. Parts of the already existing roster can be ‘frozen’ during the planning.
Both personal schedules and periods in time (for all the members of the ward)
can be kept unchanged while the algorithms search for a better solution in the
remaining part of the problem domain.

2.6 Schedule

The roster of the ward, in which the shift assignments to people are stored, is
called the schedule. It has dimensions P and T, where T stands for the number
of assignment units. We will refer to a personal schedule for person p by the
notation schedule, and to a particular assignment at unit ¢ by the notation
schedulep, ;.

We define assignment units as entities of minimum allocation in a schedule. They
are mainly introduced to handle the soft constraints on the personnel’s schedules.
In the approach of ANROM, where personnel requirements and schedules make
use of shift types, each shift type on each day has a corresponding assignment
unit. The total number of different assignment units T for a schedule is therefore
equal to S x D. An assignment unit t; (1 < s < S) corresponds to shift type s.
For the clarity of notations, s; is introduced as the shift type that corresponds
to the assignment unit t.

We illustrate the meaning of assignment units with a simple example. A fragment
of a possible personnel roster is presented in Fig. 1. We notice that there are
five people in the ward, and that there are three different shift types. Fig. 2
presents the schedule that corresponds to the roster of Fig. 1. Each column in
the schedule represents an assignment unit. For every day of the planning period
there are S columns, each of them corresponding to a shift type. The assignment

l HMon[Tue[Wed[Thu[Fri[Sat[Sun‘

Pl M| M| L | L [N

P2|| N N|L|L

P M| M| M| M MMM
P4|| M L | N|NIN
P5|ML| L | L | L

Fig. 1. Roster example for 5 people (P1,..., P5) and 1 week; M, L, and N being the
shift types introduced in Table 1

units are ordered according to the start times of the shift types they represent.
When two shift types have the same start time, the first assignment unit will

l H Schedule Example

P1 * N * B * N *] * R
P2 L * B * B * o * N
P3 ol I I ol I R B _
P4 * R] * o * L k o
P5 X |k o * R * L * N

Fig. 2. Schedule corresponding to the roster in Fig. 1: ‘*’ denotes that there is an
assignment in the schedule, ‘-’ denotes that the schedule is free, * will be specified in

Section 3

match the shift type with the earliest end time. The assignment units defined
for this approach do not represent consecutive or separate periods but they will
very often overlap in time. The number of assignment units equals the number
of shift types times the number of days in the planning period (T" = S* D, where
D denotes the number of days in the planning period).

3 Hard Constraints

Hard constraints are those that must always be satisfied. We can cover most
real-world hospital situations with the hard constraints of the following set.

3.1 Maximum one assignment per shift type per day

In ANROM, it is not considered feasible to assign the same shift to a member
of the ward more than once per day. A violation of this constraint would involve
twice the workload for that person. The constraint can be represented by (1),
in which pref is a number indicating that assignments have been made in a
post-planning coverage procedure. A value 0 at a schedule position schedule,, ;
indicates that there is no assignment for person p at assignment unit ¢. Any value
different from 0 denotes the skill category for which an assignment is made. It
is only in exceptional cases that a person will have an assignment for another
than his or her main skill category. The values pref+1 to pref+ Q represent the
skill categories 1 to Q but the added number prefindicates how the assignments
were made.

Vp,(1<p<P); Vt, 1 <t<T):

schedule,; € {0,1,...,Q,pref+1,...,pref+ Q} (1)

Within a ward, the schedule representation of ANROM thus prevents personnel
members from having more than one assignment per shift and per day, be it
for their main or for an alternative skill category. It is not the case that this
constraint prevents people from being assigned to overlapping shifts, a condition
that will be handled by a soft constraint in Section 4.

3.2 Required skill

In case the number of people required for a skill category is higher than the
available number, those who have the skill as an alternative grade can assist (see
also Constraint 2 in Section 4). It is infeasible to assign tasks to people who are
not qualified to carry them out. This is formally presented in (2), in which the
values that can occur in a personal schedule are restricted to the following set.

Vp,(1<p< P); ¥, (1<t <T):
schedule, € {0, qp, qp + prefl UQA, U QA, + pref (2)

with A+a={z ¢ (x—a) € A}

3.3 Personnel requirements

Personnel requirements, also called ‘coverage constraints’, express the number of
personnel of each skill category needed to staff the ward. They are set by man-
agement and are usually expressed in terms of the minimum number of personnel
required and the preferred number of personnel to meet patients’ needs.

4 Soft Constraints

4.1 Introduction

The real-world situation addressed in this research incorporates a high number
of soft constraints on the personal schedules. The soft constraints will preferably
be satisfied, but violations can be accepted to a certain extent. It is highly
exceptional in practice to find a schedule that satisfies all the soft constraints.
The aim of the search algorithms is to minimise the real impact of violations of
these constraints. The users of the system specify all the constraints.

Some of the constraints strengthen other constraints, while others are adverse
factors in the planning of real-world hospital wards. Very often a few constraints
are even contradictory in reality. It is sometimes obvious that certain constraints
can never be satisfied at all. In all of these cases, the user of the planning software
must be informed about the extent to which each type of constraint is violated.

4.2 Relaxation of constraints

Apart from describing the meaning of every constraint, we also explain some
exceptions for the evaluation in addition to certain corrections which are re-
quired in holiday periods or periods of illness absence. Boundary constraints at
the beginning and end of the planning period have an important impact on the
evaluation. In general, the rule holds that a penalty is generated when a violation
of a constraint could be avoided in the current planning period by scheduling

appropriately. No violation is generated when the constraint, which is not satis-
fied, can still be satisfied by scheduling appropriate shifts in the next planning
period.

The evaluation of an absence and a free day can be very different. Absences are
personal constraints such as holidays, illness, etc (Constraint 22 and 23 in Section
4.3). Free days are days in a personal schedule on which nothing is scheduled.
Manual planners evaluate some constraints in a less strict manner when they
are violated by a day off than in the case where the violation is caused by a free
day. Some constraints are relaxed when an absence prevents scheduling shifts
which could satisfy the constraint. Free days cannot allow for a compensation
because free days can become scheduled days by assigning a shift. The same
ideas hold when distinguishing between scheduled shifts and requested shifts for
some particular soft constraint types (Constraint 24), as explained in Section
4.3.

4.3 Categories of soft constraints

Hospital constraints Personnel scheduling is organised per hospital ward in
this research project. A ward is a group of personnel working together in the
same location (e.g. a certain floor in a hospital) or on the basis of their activities
(e.g. the ambulance team). A number of general constraints are recommended by
the hospital but in certain situations, they may need to be ignored. Next to the
rules which hold in the entire hospital, each ward can define their house rules.
The general hospital constraints will be listed in turn and explained in detail.

Constraint 1 Minimum time between two assignments

There is a legal constraint depicting how many hours personnel should be free
between two assignments. In practice, the time between two assignments de-
pends on the shift types. The formulation of this constraint is represented by
two extra data fields corresponding to the shift types. In ANROM, planners can
decide to augment or diminish the rest time before and after each shift type.
Scheduling a morning shift which starts only 7 hours after a late shift has ended
is obviously worse than scheduling a short afternoon shift within 7 hours af-
ter a short morning shift, for example. Before and after very short duties (like
a morning shift from 8 till 12) a shorter break can be acceptable. The terms
shift_befores and shift_afters denote the recommended free time before shift
type s starts and after it ends. A penalty will be generated whenever there is
an overlapping in time between a shift type and a forbidden zone from another
shift. Since this constraint is always very important, the penalty is proportional
to the number of overlapping minutes. Table 2 presents an example, extracted
from a real-world hospital situation, in which the start and end times of the shift
types, the recommended idle times before and after them are shown. The names
of the shift types are abbreviations of the shift names in the hospital. Fig. 3,
which is derived from the data in Table 2, illustrates the constraint better. Each
shift type is presented as a bar in the figure. The start and end time of the shifts

are clearly visible and forbidden sequences between shift types can be derived
from the periods before and after the shift, in which no other work is allowed.
The constraint restricts shift types scheduled on a certain day, in addition to
assignments on consecutive days in some particular cases. It makes no sense to
check this constraint for assignments that are two days or more apart. The time
between them will always suffice. The penalty for Constraint 1 is denoted by
penalty, c1 for person p. The formal representation is given in (3).

VPa(1§p§P)7 Vth(lStIST)v VtQa(t1<t2§T)

penalty, c1 =0

81 = Sy, 52 = Sty

dy = t1/S,dy = t5/S

x = shift_ends, + shift_afters, — (shift_starts, + 24 % 60 * (do — dy))
y = shift_ends, — (shift_starts, + 24 % 60 x (d2 — d1) — shift_befores,) (3)

IF (di 42 > da A scheduley, 4, # 0 A schedulep s, # 0)

x IF (z>0)
= penaltyy,c1 + {y IF (y > 0)

Unoccupied Time (hrs)
IShifts “ shift_starts [shiﬁ,endsl shift_befores [shift,aﬂers
SE |‘Short’ Early 6:00 10:00 10 8
EE|‘Early’ Early 6:00 14:00 10 8
SD|‘Short’ Day 8:00 12:00 8 8
E |Early 8:00 17:00 8 8
D |Day 10:00 18:00 8 8
SL |‘Short’ Late 14:00 18:00 8 8
L |Late 14:00 22:00 8 10
LL|‘Late’ Late 17:00 22:00 8 10
N |Night 22:00 6:00 10 10

Table 2. Start and end times of a realistic shift type set; unoccupied periods before
and after

Constraint 2 Alternative skill category

It is a hard constraint that all the work has to be done by skilled personnel. If
a certain duty requires a head nurse, then preferably a head nurse will do the
job unless there is none available. The only possibility to still obtain a feasible
solution in that case is to find a person from another skill category who is

,,,,,, e ——— SE - — - — — — — = — _
EE]- - - - - - (R PR EE - - -1 -
———————— 1 - - - - -~ Sb [—-- -~]

E |} ------ [<)=—————— | B - -
SR T e T
== SL_}-----—-] - - - —===5 L
-1 L - ------- [—=]-—- - -~ | L -
————— I LL - —] [-- - - ———F LL -
—————————— N e et I LA
[] [T T] I [T 1] [T TTTTTOTTTTT]

12:00 18:00 00:00 06:00 12:00 18:00 00:00

Fig. 3. Minimum time between two shift types

authorised to replace people from the required skill category (see Section 2.2).
Assigning people from alternative skill categories is sometimes necessary to cater
for staff shortages, but it is not desirable and will be penalised in the evaluation
function. A penalty is generated each time a shift is performed for a duty other
than ones that are covered by the prime skill category: penalty, co. This is
presented in (4).

Vp,(1<p< P):

penalty, co = {t £ 1 <t < T A schedule, s € QA, U QA, + pref}|(4)

Constraints defined by the work regulation Every personnel member has
a contract with the hospital. It is called the work regulation or work agreement
(see Section 2.3). There are different work regulations for full time and half time
personnel members, night nurses, etc. Many hospitals in Belgium allow for the
definition of a personal work agreement per nurse. This enables them to formu-
late personal constraints such as every Wednesday afternoon free, work a weekend
every two weeks, no stand by duty, etc. When defining the work regulation, either
of the following constraints can be defined or made idle.

Constraint 3 Maximum number of assignments

This constraint determines the number of shifts a person with the work reg-
ulation w can -at most- work during the planning period: maz,,. In order to
reflect the real-world situation, adaptations to this number are made in cases
of illness, holiday, ... When a personal schedule contains an ‘absence’, the type
of leave or absence is given. Depending on the reason for the absence, it will
be taken into account for the evaluation of the assignments and hours. We de-
note by A, the number of absence days within the planning period. Consider a
planning period of 4 weeks (28 days) and a full time work agreement with max-
imum 20 assignments during the planning period. Suppose a full time personnel
member is on sickness leave during 10 days. The constraint is adapted to this
situation by changing the value of the maximum number of assignments from

20 to [20* (28 —10)/28]. The cost function value for the constraint, penalty, cs
for person p, is calculated per planning period. There is no transfer of excesses
to the next planning period. This is represented by (5).

Vp,1<p< P):

penaltyp.cs =x IF (z > 0)
v (5)
x={t 1<t <TAschedulep+ # 0} — D;AP * MATw

Constraint 4 Maximum number of consecutive days

This constraint limits the maximum number of consecutive working days by
max_consecutive_days,,. The evaluation involves checking the days which are
scheduled at the end of the previous planning period (previous_consecutive_daysy).
In practice, the schedule of the previous planning period is known and the con-
secutive days at the end of it can be calculated. For the description of the soft
constraints in this section, we assume that the required data is given. Suppose,
for example, that the maximum number of consecutive days is 7. If 6 consec-
utive days are scheduled at the end of the previous planning period, the first
day of the current planning period can be scheduled without violating the con-
straint. Scheduling both the first and the second day will generate a penalty.
When the last 8 consecutive days at the end of the previous planning period
have assignments, no penalty will be generated in the current period when there
is nothing scheduled on the first day. Constraint violations made in the past are
not penalised in the current planning period. This is formally presented in (6).

Constraint 5 Minimum number of consecutive days

A working day between two free days is seldom wanted. We denote min_consecutive_days,,
as the minimum number of consecutive working days for the work regulation w.
Also for this constraint, the previous planning period for person p is taken into
account by previous_consecutive_daysy,. A penalty will be generated if the con-
straint could be satisfied by scheduling a duty on the first day(s) of the current
planning period. Consequently, it is not considered a violation when the con-
straint is not satisfied at the end of the planning period. If, for example, at least
3 consecutive days are required, no penalty will be generated if only the last two
days of the current planning period are scheduled. The constraint on the mini-
mum number of consecutive days is relaxed when a stretch of working days and
requested days off meets the requirement. Consider the case where at least three
consecutive days are required. Suppose a person works two consecutive days and
ends with a requested day off immediately afterwards. This schedule will not

10

Vp,(1<p<P):

w = wp
consecutive_days = previous_consecutive_daysy
penaltyy ca =0

Vd,(1<d<D):
z=|{t £1 <t < SAschedule, (g—1)«s+t 7 0}] (6)

consecutive_days + 1 IF (z>1)
y = consecutive_days — mazx_consecutive_daysw

penalty,.ca +y, IF (y > 0) } IF (z=0)
consecutive_days = 0

generate a penalty because the requested day off is, unlike free days, considered
part of the work stretch. A day off d, for person p is denoted by 1 in days_off, ,
(see also Constraint 22) other days are denoted by 0. This is illustrated by (7).

Constraint 6 Maximum number of consecutive free days

The value max_cons_free_days,, denotes the maximum number of consecutive
free days for work regulation w. The number of consecutive free days at the end
of the previous planning period is denoted by previous_consecutive_free_days,
for person p. The constraint is presented by (8).

Constraint 7 Minimum number of consecutive free days

The minimum number of consecutive free days for work regulation w is denoted
by min_cons_free_days,,. More formal detail is given in (9). Constraint 6 and 7
are analogous to the previous two constraints, they limit the consecutive free days
instead of the consecutive working days. The same rules hold at the beginning
and the end of the planning period. With respect to absences and free days,
the most relaxed attitude holds. Absence days are not added to the number of
consecutive free days (even if they occur in the sequence) when the maximum
number is evaluated. Absence days are added to the number of consecutive free
days for the minimum constraint. There is no violation for the minimum number
of consecutive free days, when absence days are isolated (flanked by working
days).

Constraint 8 Maximum number of hours worked

The limit on the maximum number of hours during a planning period is given
by max_hours,, for the corresponding work regulation. Unlike most other con-
straints, the working time is cumulative and this also affects the evaluation
of Constraint 9. By adding the real amount of overtime or undertime to the
scheduled time in the next planning period, the system prevents the team from

11

Vp,(1<p<P):

w = wp
consecutive_days = previous_consecutive_daysy
consecutive_days-off = previous_consecutive_days-off,
penaltyp.cs =0

vd,(1<d<D):
z=|{t £ 1 <t < S Aschedule, g—1)ss+t 7 0}
consecutive_days + 1, IF (x>1) (7)
cons_days_off + 1, IF (z=0Adaysoff,,=1)

y = min_consecutive_days,, — consecutive_days
—cons_days_off

penalty, cs +y, IF (y>0)

consecutive_days = 0

cons_days_off =0

IF (z =0 A days_off, 4, = 0)

having unfair schedules. The balance of the working hours for personnel member
p, which is transferred to the next planning period, (previous_hoursy) is added
to the hours carried out in the current planning period. Suppose the starting
balance for a person is negative in the current planning period. There is a pos-
sibility for compensating undertime without generating a penalty for overtime.
Overtime is very common in hospitals, so an option is available for not penalising
overtime unless a certain threshold threshold_hours is exceeded. The value is
the same for all the personnel in the ward. When violations are less than this
given number of hours, the penalty is ignored.

Every work regulation has a standard_performance,,, which gives the normal
number of hours worked on a standard day. We call AH,, = standard_performance,,*
A, the number of hours on absence days. In nearly the same way as explained
with respect to Constraint 3, a weighted new value for the maximum number of
hours is calculated. This is demonstrated in (10).

Constraint 9 Minimum number of hours worked

The minimum number of hours a person should work during the planning period
is min_hours,,. Evaluating the constraint is carried out in the same way as
Constraint 8. The balance of hours worked at the end of the previous planning
period is added to the hours of the current period. Absence days or illness can
be compensated in the evaluation of the constraint. The constraint is illustrated
in (11). The evaluation of the constraint can be relaxed by setting a threshold
value for generating penalties. When violations are less than a given number of
hours, it is possible to ignore these violations of the constraint. Since the real
amount of overtime or undertime will be added to the scheduled time in the next

12

Vp,(1<p<P):

w = wp
cons_free_days = previous_consecutive_free_daysp
penaltyy.ce =0

vd,(1<d<D):

z={t £1 <t < SAschedule, g—1)«s++ 7 0}]
consecutive_free_days + 1 IF (z =0)
y = cons_free_days — max_cons_free_days.,

penalty, ce +y, IF (y > 0) } IF (x > 1)
cons_free_days = 0

planning period, the system prevents the team from having unfair schedules. A
correction is calculated when a person is absent due to illness or a holiday. In
exactly the same way as explained with respect to Constraint 3, a weighted new
value for the maximum and minimum number of hours is calculated.

Constraint 10 Mazimum number of assignments per day of the week

This constraint limits the number of assignments on certain days of the week by
Max-dayw, day, in which w denotes the work regulation and day is the day of the
week (Monday till Sunday). It is, for example, possible to provide at least one
free Monday during the planning period or to restrict the number of working
weekends with this constraint. There is no transfer between planning periods.
The constraint is formally presented in (12).

Constraint 11 Mazimum number of assignments for each shift type

This constraint provides the possibility of forbidding and/or restricting the as-
signment of certain shift types shift for the work agreement by maz_shift,, hife-
The planner can, when for example defining a work agreement for night nurses,
set to 0 the number of allowed shift types for every shift that differs from the
night shift. Other work agreements, like cleaner for example, will never work
a night shift. Very often, the maximum number for each shift type is set to a
rather low number in order to enable shift type variation in the schedules. The
constraint is demonstrated formally in (13).

Constraint 12 Mazimum number of a shift type per week

For every week week in the planning period, the user can limit the number of as-
signments in a personal schedule for every shift type shift by max,shiﬁ,weekw,Shiﬁ,week.
This constraint can, for example, prevent the assignment of seven night duties in

one week. Since the system allows different constraint values for different weeks,

it can also allow for the definition of shift type cycles like one ‘early week followed

by a late week’. It can be formally illustrated as in (14).

13

Vp,(1<p<P):

w = wp

cons_free_days = previous_consecutive_free_daysy
cons-days-off = previous_cons_days-off,
penaltyp.cr =0

vd,(1<d<D):
z=|{t £ 1 <t < S Aschedule, g—1)ss+t 7 0} ()
consecutive_days + 1, IF (z>1)
cons_days_off + 1, IF (z=0Adaysoff,,=1)

y = min_cons_free_days. — (cons_free_days + cons_days_off)
penaltyp.cr +y, IF (y > 0)

cons_free_days = 0

cons_days_off =0

IF (x=0Adaysoff, ,=0)

Vp,(1<p < P):

w = wp

penaltyy.cs =0

T = max_hours, — AH)p (10)
y = previous_hours, + Zthl shift_durations, * (1 — dschedule, 4,0)
penaltyp.cs =y — T IF (y — x > threshold_hours)

Constraint 13 Number of consecutive shift types

For each shift type shift, a series of allowed sequences can be defined. In consecutive_shift,, ;. fil,
i can take values from 1 to 10 and if consecutive_shift,, ,,;i] = 1 the sequence i

is allowed. The model, for example, supplies the possibility of defining 2, 4, and 6

as allowed sequences when consecutive_shift,, .,;4[2] = consecutive_shift,, ;,.n[4] =
consecutive_shift,, .,;1[6] =1, and for all the other sequences the value is 0. Se-
quences of consecutive shifts at the end of the previous planning period can in-
fluence this constraint. They are denoted by previous_consecutive_shifts, ;. The
occurrence of an absence or illness day relaxes this constraint. When the result

of adding the absence day(s) to a sequence satisfies the constraint, no penalty
will be charged. Also, when the addition of absence days is not necessary to
satisfy the constraint, the absences are ignored. It resembles the evaluation of
Constraint 4, 5, 6, and 7 and is formally presented in (15).

Constraint 14 Assign 2 free days after night shifts

14

Vp, (1 <p < P):

w = wp
penaltyy.cy =0

T = min_hours, — AHp

y = previous_hours,+

Zthl shift_durations, * (1 — schedule,+,0)

penaltyp.co = — Yy IF (z —y > threshold_hours)

(11)

Vp,1<p< P):

w = wp
penaltyy.c,o =0

Vday, (1 < day < 7):
Tday = MAT-AAYw,day
Yday = |[{(week,t) € 1 <week < D/TA1<t<S

ASCheduzep,(weekf 1)*x7*S+(day—1)*xS+t 7é 0}|

penaltyp,cio + Yday — Tday IF (Yday > Tday)

Night shifts are all the shift types which begin before and end after 00:00. The
set might contains the serial numbers of the corresponding shift types. When
this constraint is valid (night_free,, = 1), a night shift must be followed by
another night shift or by two consecutive free days. An absence day counts for
a free day. The constraint depends on daily sequences and the values will thus
be transferred at the border of different planning periods. The number of free
days after a night shift at the end of the previous planning period is given by
previous_free_after_night,. The constraint is presented in (16).

Constraint 15 Assign complete weekends

Setting this constraint does not allow a shift on Saturday without one on the next
Sunday or vice versa. It is denoted by complete_weekends,, for the entire work
regulation. There is a possibility for redefining weekends, by either considering
Friday and/or Monday as part of the weekend. The weekend definition is given
by weekend,,, for which value 0 means a Saturday-Sunday weekend; 1 denotes a
Friday-till-Sunday weekend; 2 stands for a Friday-till-Monday weekend, and 3 is
a Saturday-till-Monday weekend. The complete weekend constraint will impose
a shift to be planned on all the other weekend days as soon as there is an
assignment on Saturday or Sunday. However, a scheduled shift on Friday or
Monday does not require assignments on Saturday and Sunday. Again, absence
days will be considered as free days or as working days whenever they relax the

15

Vp,(1<p<P):

w = wp
penaltyy.c,, =0

Vshift, (1 < shift < S):

Tonify = max,shiftwyshift
Yshify = Hd§1<d< DA SChed“lepa(dfl)*S+tsh,ift £ 0}

penaltyy,.c,, + Yshify — Tsnift IF (yshiff = xShift)

Vp,(1<p<P):

w = wy
penaltyy,c,, =0

Yweek, (1 < week < D/7),Vshift, (1 < shift < S):

= mam*Shiftw shift week (14)
yshift,week = |{d § 1 S d S TA

SChedUZep,(week—1)*7*S+(d—1)*5+t8hiﬁ # 0}

xshift,week

penaltyp7012 + yshift,week - mshift,week" IF (yshift,week > x.shift,week)

constraint most.

The schedule of the previous planning period can play a role in the evaluation of
the constraint if the switch between planning periods happens in a weekend. In
ANROM, it will only occur when the value of weekend,, equals 2 or 3. We denote
the weekend days which are transferred from the previous planning period by
previous_sat, and previous_sun,,. These values are equal to 1 if there is at least
one assignment on the corresponding day; it is 0 if the day is empty.The full
constraint can be seen in (17).

Constraint 16 No night shift before a free weekend

Shifts which end after midnight cannot be scheduled before a free weekend
when this constraint is valid, i.e. when night_weekend,, equals 1. For ordi-
nary Saturday-Sunday weekends, this constraint requires that night shifts are
not scheduled on Fridays when the entire weekend is free. Other definitions of
weekends (e.g. Friday-Saturday-Sunday) restrict the schedule similarly. The con-
straint is illustrated in (18).

Constraint 17 Assign identical shift types during the weekend

16

Vp,(1<p<P):

w = wp
penaltyy, cs =0

Vshift, (1 < shift <S5):

cons_days = previous,consecutive,shiftsp7Shift
cons_days_off = previous_consecutive_days_off,
r={d&1<d< DA schedulep,(d_l)*g_‘_tshift # 0}
cons_days + 1 IF (z #0)
cons_days-off +1 IF (z = 0Adaysoff, , = 1)

y= consecutive,shiftw’shift [cons_days]
z; = consecutive,shz‘ftwﬂshift [cons_days + 1]

and 0 < i < cons_days_off
penaltyp,ci3 +1, IF (y=0AY 2 =0)
consecutive_days = 0
cons_days_off =0

IF (xz =0 Adays_off, ; =0)

If this constraint (denoted by identical_weekend,, = 1) is active, it creates a
penalty when the shift types during the weekend days are not the same. No
matter what the weekend definition is, whether it includes Friday and/or Mon-
day, this constraint only looks at the shifts which are assigned on Saturday and
Sunday. An absence will take a dummy value for this constraint, in order to
generate the lowest possible penalty. The constraint is presented in (19).

Constraint 18 Mazimum number of consecutive working weekends

This constraint limits the number of weekends in which duties are assigned
with max_consecutive_weekends,,. It does not matter if the weekends are not
completely scheduled. Only Saturdays and Sundays contribute to this constraint,
even if Friday and/or Monday are considered part of the weekend. As is explained
for other constraints on the order in which assignments may or may not be
made (consecutiveness constraints), values are transferred to the next planning
period. The number of consecutive weekends in person p’s schedule at the end
of the previous planning period is previous_consecutive_weekends,. A formal
representation can be seen in (20).

17

Vp,(1<p<P):

w=wp
penalty, cia =0
cons_days = previous_free_after_night,

IF (night_free, = 1)
Vd,(1<d< D):

n=I[{t{1<t<SAscheduley (q—1)s5+t 0
NSt € night}|

m = [{t £ 1 <t < S Aschedule, (g—1ycs4+¢ 7 0
Nst & night}|

IF (last_shift € night)
cons_days + 1 IF (n=0Am=0)
cons_days = 0 IF (n#0)
penaltyp,.cia + (2 — cons_days)
IF (n4+m #0A2— cons_days > 0)

ELSE IF (n#0Vm#0)
{ last_shift = s

cons_days =0

(16)

18

Vp,(1<p<P):

w = wp
penaltyy.cis =0
weekend_days = previous_weekend_days

IF (complete_weekends,, # 0) : Ywk, (1 <wk < D/7) :

absence_fri = absence_sat = absence_sun = absence-mon = 0

fri = sat = sun = mon =0

fri=1 IF |{t&1<t<SAschedule, (wh—1)x7+4)ss+t 7 0} # 0
sat =1 IF [{t £ 1<t < S Ascheduley ((wi—1)x7+5)x5+t 7 0} #0
sun=1 IF [{t £ 1 <t < S Ascheduley, (wk—1)«7+6)+5+t 7 0} # 0
mon=11IF |{t {1 <t < S Aschedule, (wiwres+t 7 0} #0

fri=1

{ sat = previous_sat, IF (wk=1)
sun = previous_suny

mon =1 IF (wk = D/J7)

absence_fri = days-off, (wx—1ysr+a IF (fri =0)

absence_sat = days-off, (,x—1y.7+5 1F (sat = 0)

absence_sun = days-off, (,x_1)sr1e LI (sun =0)

absence_mon = days_off, ,x.; I[F (mon = 0)

absence = absence_sat + absence_sun

IF (weekend,, = 0) :
penaltyp.c1s + 1, IF (sat # sun A absence = 0)

IF (weekend, = 1) :
penaltyp.c1s + 1, IF ((sat # sun A absence = 0)
V ((fri = 0 A absence_fri # 0) A sat + sun = 2))

IF (weekend,, = 2) :
penaltyy,.cis + 1,
IF ((sat # sun A absence = 0) V (((fri = 0 A absence_fri # 0)
V (mon = 0 A absence_mon # 0)) A sat + sun = 2))

IF (weekend,, = 3) :
penaltyp.c1s + 1, IF ((sat # sun A absence = 0)
V ((mon = 0 A absence_mon # 0) A sat + sun = 2))

(17)

19

Vp,(1<p<P):

w = wp
penaltyy, cie =0

IF (night_weekend,, # 0) : Vweek, (1 < week < D/T7) :

fri = |{t €1 <t < SAscheduley (week—1)x7+4)x5+t 7 0}
sat = |{t £ 1 <t < S A scheduley, (week—1)x7+5)x5+t 7 0]
sun = [{t £ 1 <t < S A scheduley, (week—1)s7+6)x5+t 7 0}]

sat =t IF (schedulep (week—1)x7+5)x5+t 7 0)

sun =t IF (scheduley ((week—1)x7+6)x5+t 7 0)

absence_sat = days-off, weer—1)s7+5 IF (sat =0)

absence_sun = days_off, (week—1)x7+6 IF (sun =0)
penaltyp,c17 + 1, IF (sat # sun A absence_sat + absence_sun = 0)

(18)
IF (weekend, = 0V weekend,, = 3)
n=|[{t £ 1<t <S5 Ascheduley ((week—1)x7+a)x5+¢ 7 0
A sy € night}|
penaltyp.cis + 1, IF (sat+sun=0An=1)
IF (weekend, =1V weekend,, = 2)
n= ‘{t 5 1<t< SA SChedUZep,((week‘—l)*7+3)*5+t # 0
A st € night}|
penaltyp.ci6 +1, IF (fri+sat+sun=0An=1)
Vp,(1<p< P):
w= wp
penalty, cir =0
IF (identical weekend,, = 1) : Yweek, (1 < week < D/7) :
Vt,(1<t<S): (19)

20

Vp,(1<p<P):

w = wp

consecutive_weekends = previous_consecutive_daysy
penaltyy.cis =0

VYweek, (1 < week < D/T7) :

sat = [{t £ 1 <t < S Ascheduley ((week—1)s7+5)x5+¢ 7 0}]
sun = [{t £ 1 <t < S A schedule, (week—1)+7+6)x5+t 7 0}]
consecutive_weekends + 1, IF (sat + sun > 0)

T = consecutive_weekends — max_consecutive_weekends.,
penaltyp,c1s + T, IF (z >0)
consecutive_weekends = 0

IF (sat + sun =0)

(20)

21

Constraint 19 Mazimum number of working weekends in 4 weeks

The constraint is a restriction on weekend work during periods of 4 consecutive
weeks, provided that at least one of the 4 weeks belongs to the planning period.
The maximum number of weekends is given by max_weekends_4_weeks,,. Sup-
pose, for example, that we have a planning period of x weeks. The constraint
will be evaluated in x overlapping periods, from the period which starts 3 weeks
before the current one, up until the period which ends with the last week of the
current period. The number of working weekends for person p in the previous
planning period is given by previous_weekends_3,, previous_weekends_2,, and
previous_weekends_1,. It is a very specific request which was implemented to
satisfy the needs of particular users of the software based on an earlier version
of ANROM and is formally illustrated in (21).

Vp,1<p< P):

w = wp
penaltyy.cig =0

Vperiod, (1 < period < D/7) :

n =4 — period

previous_weekends_n, IF (n > 0)

0 ELSE (21)
Yweek, (—n < week < —n + 4 A week > 0) :

weekends =

sun = |{t £ 1 <t < T Ascheduley, (week—1)+7+6)x5+t 7 0}
weekends + 1, IF (sat + sun > 0)

r = weekends — max_weekends_4_weeks,

penaltyp.cio +x, IF (x> 0)

{ sat = [{t £ 1 <t < T A scheduley, (week—1)x7+5)x5+t 7 0}]

22

Constraint 20 Mazimum number of assignments on bank holidays

Unlike most of the other constraints this constraint is cumulative. Bank holi-
days are recorded over a longer period than the planning period only. For each
person, the number of cumulative assignments on bank holidays is denoted by
previous_bank,. The maximum number of assignments on bank holidays per
work regulation is given by bank_holidays,. A structure bank is an array of
length D and it has value 1 for bank holidays and value 0 for other days. Usu-
ally hospitals prefer to limit the number of assignments on bank holidays during
an entire year with this value. The constraint is formally demonstrated in (22).

Vp,(1<p<P):

w = wp
bank_days = previous_bank,
penaltyp.c20 =0

Vd, (1 <d < D Abankld] = 1) :
(22)
{x = |{t £1 <t < S Ascheduley (g—1)xs4t 7 0}
bank_days + 1 IF (z>0)

y = bank_days — bank_holidays.,
penalty, c20 =y IF (y > 0)

Constraint 21 Restriction on the succession of shift types

The constraint on the minimum time between shift types already restricts some
sequences of constraints. However, the current constraint can explicitly forbid
particular combinations of shift types. Unlike the constraint on minimum time
between assignments, this constraint evaluates shifts which are scheduled on
consecutive days. A scheduled shift is connected to the day at which the shift
starts. The succession constraint also provides the possibility of forbidding cer-
tain shifts after a free day or even free days after certain shifts. The restrictions
are denoted by succession,,, a two dimensional structure with a column and
row for each shift type in addition to one for an empty day. The elements in
succession,, are 0 when the column shift cannot be scheduled after the row
shift, and 1 when there is no restriction on the succession. Only the last day of
the previous planning period can influence the evaluation of the constraint in
the current period. The parameter last_day,. ¢, has value 1 when the correspond-
ing assignment unit t on the last day of person p’s previous planning period is
occupied. A real-world example demonstrating this constraint is given in Table

23

3. The combinations of letters in the rows and columns (SE, EE, etc) are ab-
breviations of shift types in a practical hospital application. The corresponding
shift types have been presented in Table 2.

[Succession][[- [SE[EE[SD]E[D[SL|L[LL|N]

V|V

SE
EE
SD
E
D
SL
L
LL
N

V|V

ViV

<|<|<|<<
<|<|<|<|<
<|<|<<]|<]|=<
<|<|<<<]|<]<<

<|<|<<<]<]< <
<|<|<l<|<|<|<|<|<
<l<|<|<<|<|<|<|<|<

<|<|< g << << <<

Table 3. Allowed successions of shift types on consecutive days are represented by ‘v’,
‘-’ denotes a day on which nothing is scheduled

Personal constraints It is often possible for individual personnel members
to make agreements with the personnel manager or head nurse. External or
private obligations do not fall under the category of hard constraints. They can
theoretically be cancelled in emergency situations. However, there are several
possibilities of giving extra weight to a personal obligation. The reason for the
absence can be taken into account in addition to the importance of the external
commitment. Such situations are represented by the following constraints.

Constraint 22 Day off

Anything that prevents the personnel member from being at work can be handled
as a day off in the cost function. Depending on the reason for the day off, some
types of requests for absence will affect the value which is set for some of the
other constraints (see Constraint 3, 7, 8, 9, etc). Every person has the right to
take holiday during the working year. We do not want to generate penalties for
undertime when a person takes holidays in the same period.

Illness, refresher courses, compensation, and occasional family reasons are all
examples of day off types which can be placed in the schedule. The requested
days off for person p at day d are denoted by 1 in days_off, ;. The program
foresees a possibility of using an extra weight (to multiply the weight factor
with) for imperative needs. When the extra weight is valid, we find a 1 in the
structure extray q. The value of the extra weight is the same for the entire ward:
extra_penalty. The system will thus distinguish between strong and weak day
off requests and penalise correspondingly. This constraint is formally defined in
(24).

24

Vp,(1<p<P):

w = wp
SUCCESSLON = SUCCESSIONy,
last_day = last_day,

penaltyp, c21
=H{tu) EA1<t<SAT<u<t) A
(last_day: # 0 A scheduley ., # 0) A succession ., = 0}]
+ {tu) E(A<t<T—-SAt<u<t+S)A
(schedulep,t # 0 A schedulep . # 0) A successions,,s, = 0}]
+ {t £ (1 <t <S) A successions,— =0 A
last_day: 0 A [{u € 1 <u < S A scheduley,., # 0} = 0}
+ {t £ (1<t <T—8) A successions,,— = 0 A schedule,; # 0
A Hu &1 <u<SAscheduley 1/s+1yes+u 7 0} = 0}]
+ {t £ (1<t <S)Asuccession—y =0 A
schedulep 0N {u § 1 <u < S Alast_day, # 0} = 0}]
+ {t € (S <t <T) A succession_ 5, = 0 A schedulep; # 0
AHu &l <u< SAlastdayu/s—1)ss+u 7 0} = 0}]

(23)

Vp,(1<p<P):

penaltyy ca22 =0

Vd,(1<d<D):
z={t £1 <t < SAschedule, (g—1)s+¢ 7 0}]
IF (days-off, ;= 1Az >0)

1 IF (extrapq =0)
penaltyp,co2 + { extra_penalty ELSE

(24)

25

Constraint 23 Shifts off

People can avoid certain shifts on a particular day of the planning period and
then shift_off,, ; equals 1. For the rest of the assignment units of the planning
period, the value is 0. It is recommended to avoid conflicts with certain activities
in the personal agenda by blocking small parts of the planning period. The idea
is the same as in patterns, but this constraint is not cyclic. Also, the feature to
attach a stronger weight to some requests (as explained with respect to Con-
straint 22), exists for this constraint. Those requests which require a stronger
penalty have 1 in extra_shift,, The formal definition can be seen in (25).

Vp,(1<p<P):

penaltyp.c23 =0
Vt,(1<t<T):

IF (shift-off, , = 1 A schedulep # 0) (25)
IF (extra_shifty: = 0)

1
penaltyp ce3 + extra_penalty ELSE

Constraint 24 Requested assignments

There are cases in which a person wants to be assigned to a specific shift type on
a certain day. The set of required assignments (corresponding to assignment unit
t) for person p is denoted by 1 in requested_assignment, ;. For the other as-
signment units, the value is 0. As explained with respect to Constraint 23, there
is a possibility for giving a higher or lower importance to each requested as-
signment. For the required assignments with a higher importance, the structure
extra_requested_shift, ; has the value 1. The system applies the same weight fac-
tor and multiplication factor for violations on personal constraints as explained
in the day off constraint (Constraint 22). A formal illustration is presented in
(26).

Vp,(1<p<P):

penaltyy,ce24 =0
Vt,(1<t<T):
IF (requested_assignment,: = 1 A schedulep; # 0) (26)

1 IF (extra_requested_shift,: = 0)
penaltyp,coa + { extra_penalty ELSE

26

Constraint 25 Tutorship

There exists a possibility of defining a tutor for a personnel member who cannot
work alone: tutor,. This constraint implies that the tutor has to be working
whenever the other person is. The same concept can be used for any set of people
who want to work at the same time (e.g. tutees, car-poolers, etc). ANROM does
not generate a penalty when the tutor is working during a free moment of the
tutee, and neither when the tutor’s shift overlaps completely with the tutee’s
shift. When two people are required at the same time all the time, they can be
set as each other’s tutor. The constraint is presented in (27).

Vp,(1<p<P):

tutor = tutory
penaltyp,.cos = |{t £ 1 <t < T A schedulep # 0 A coveriuior,e = 0}|

with (27)

coveriytory = [{u & (¢/S)* S <u< (t/S+1)xS
A shift_starts, < shift_starts, A shift_ends, > shift_ends, }|

Constraint 26 People not allowed to work together

This constraint applies the same idea as the above. It only prevents the two
people involved from being present in the ward at the same time. The person
not_together, should not work when p is at work. The constraint is often used in
order to provide a maximal availability of people with equal skills. Other appli-
cations are those in which family members prefer to alternate their working time
in order to take care of the children. All the assignments which are overlapping
in time in their schedules violate this constraint which is formally presented in
(28).

27

Vp,(1<p<P):

not = not_together,
penaltyp.cos = |{t £ 1 <t < T A scheduley; # 0 A overlapnot,t # 0}

with
overlapnoty = [{u & (¢/S)* S <u< (t/S)*xS+S

A (shift_starts, < shift_starts, < shift_ends,
V shift_starts, < shift_ends, < shift_ends,)}|

(28)

28

References
1. Greet Vanden Berghe. An Advanced Model and Novel Meta-Heuristic Solution Meth-

ods to Personnel Scheduling in Healthcare. PhD thesis, University of Gent, Belgium,
2002.

29

